Cargando…
Regions of interest computed by SVM wrapped method for Alzheimer’s disease examination from segmented MRI
Accurate identification of the most relevant brain regions linked to Alzheimer’s disease (AD) is crucial in order to improve diagnosis techniques and to better understand this neurodegenerative process. For this purpose, statistical classification is suitable. In this work, a novel method based on s...
Autores principales: | Hidalgo-Muñoz, Antonio R., Ramírez, Javier, Górriz, Juan M., Padilla, Pablo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929832/ https://www.ncbi.nlm.nih.gov/pubmed/24634656 http://dx.doi.org/10.3389/fnagi.2014.00020 |
Ejemplares similares
-
Spatial component analysis of MRI data for Alzheimer's disease diagnosis: a Bayesian network approach
por: Illan, Ignacio A., et al.
Publicado: (2014) -
Segmentation of Brain MRI Using SOM-FCM-Based Method and 3D Statistical Descriptors
por: Ortiz, Andrés, et al.
Publicado: (2013) -
An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm
por: Wu, Wentao, et al.
Publicado: (2020) -
SVM and SVM Ensembles in Breast Cancer Prediction
por: Huang, Min-Wei, et al.
Publicado: (2017) -
Simulation and Mitigation of the Wrap-Around Artifact in the MRI Image
por: Hu, Runze, et al.
Publicado: (2021)