Cargando…
The analytical landscape of static and temporal dynamics in transcriptome data
Interpreting gene expression profiles often involves statistical analysis of large numbers of differentially expressed genes, isoforms, and alternative splicing events at either static or dynamic spectrums. Reduced sequencing costs have made feasible dense time-series analysis of gene expression usi...
Autores principales: | Oh, Sunghee, Song, Seongho, Dasgupta, Nupur, Grabowski, Gregory |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3929947/ https://www.ncbi.nlm.nih.gov/pubmed/24600473 http://dx.doi.org/10.3389/fgene.2014.00035 |
Ejemplares similares
-
Temporal dynamics in meta longitudinal RNA-Seq data
por: Oh, Sunghee, et al.
Publicado: (2019) -
Gaucher Disease: Transcriptome Analyses Using Microarray or mRNA Sequencing in a Gba1 Mutant Mouse Model Treated with Velaglucerase alfa or Imiglucerase
por: Dasgupta, Nupur, et al.
Publicado: (2013) -
Time Series Expression Analyses Using RNA-seq: A Statistical Approach
por: Oh, Sunghee, et al.
Publicado: (2013) -
Experimental assessment of static and dynamic algorithms for gene regulation inference from time series expression data
por: Lopes, Miguel, et al.
Publicado: (2013) -
Genomic and Transcriptomic Landscape of Tumor Clonal Evolution in Cholangiocarcinoma
por: Chen, Geng, et al.
Publicado: (2020)