Cargando…

Projected Distributions and Diversity of Flightless Ground Beetles within the Australian Wet Tropics and Their Environmental Correlates

With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species an...

Descripción completa

Detalles Bibliográficos
Autores principales: Staunton, Kyran M., Robson, Simon K. A., Burwell, Chris J., Reside, April E., Williams, Stephen E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930578/
https://www.ncbi.nlm.nih.gov/pubmed/24586362
http://dx.doi.org/10.1371/journal.pone.0088635
_version_ 1782304548340105216
author Staunton, Kyran M.
Robson, Simon K. A.
Burwell, Chris J.
Reside, April E.
Williams, Stephen E.
author_facet Staunton, Kyran M.
Robson, Simon K. A.
Burwell, Chris J.
Reside, April E.
Williams, Stephen E.
author_sort Staunton, Kyran M.
collection PubMed
description With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group’s primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region.
format Online
Article
Text
id pubmed-3930578
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-39305782014-02-25 Projected Distributions and Diversity of Flightless Ground Beetles within the Australian Wet Tropics and Their Environmental Correlates Staunton, Kyran M. Robson, Simon K. A. Burwell, Chris J. Reside, April E. Williams, Stephen E. PLoS One Research Article With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group’s primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region. Public Library of Science 2014-02-20 /pmc/articles/PMC3930578/ /pubmed/24586362 http://dx.doi.org/10.1371/journal.pone.0088635 Text en © 2014 Staunton et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Staunton, Kyran M.
Robson, Simon K. A.
Burwell, Chris J.
Reside, April E.
Williams, Stephen E.
Projected Distributions and Diversity of Flightless Ground Beetles within the Australian Wet Tropics and Their Environmental Correlates
title Projected Distributions and Diversity of Flightless Ground Beetles within the Australian Wet Tropics and Their Environmental Correlates
title_full Projected Distributions and Diversity of Flightless Ground Beetles within the Australian Wet Tropics and Their Environmental Correlates
title_fullStr Projected Distributions and Diversity of Flightless Ground Beetles within the Australian Wet Tropics and Their Environmental Correlates
title_full_unstemmed Projected Distributions and Diversity of Flightless Ground Beetles within the Australian Wet Tropics and Their Environmental Correlates
title_short Projected Distributions and Diversity of Flightless Ground Beetles within the Australian Wet Tropics and Their Environmental Correlates
title_sort projected distributions and diversity of flightless ground beetles within the australian wet tropics and their environmental correlates
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930578/
https://www.ncbi.nlm.nih.gov/pubmed/24586362
http://dx.doi.org/10.1371/journal.pone.0088635
work_keys_str_mv AT stauntonkyranm projecteddistributionsanddiversityofflightlessgroundbeetleswithintheaustralianwettropicsandtheirenvironmentalcorrelates
AT robsonsimonka projecteddistributionsanddiversityofflightlessgroundbeetleswithintheaustralianwettropicsandtheirenvironmentalcorrelates
AT burwellchrisj projecteddistributionsanddiversityofflightlessgroundbeetleswithintheaustralianwettropicsandtheirenvironmentalcorrelates
AT resideaprile projecteddistributionsanddiversityofflightlessgroundbeetleswithintheaustralianwettropicsandtheirenvironmentalcorrelates
AT williamsstephene projecteddistributionsanddiversityofflightlessgroundbeetleswithintheaustralianwettropicsandtheirenvironmentalcorrelates