Cargando…

Lymphatic Involvement in the Disappearance of Steroidogenic Cells from the Corpus Luteum during Luteolysis

In mammals, the corpus luteum (CL) is an essential endocrine gland for the establishment and maintenance of pregnancy. If pregnancy is not established, the CL regresses and disappears rapidly from the ovary. A possible explanation for the rapid disappearance of the CL is that luteal cells are transp...

Descripción completa

Detalles Bibliográficos
Autores principales: Abe, Hironori, Al-zi’abi, Mohamad Omar, Sekizawa, Fumio, Acosta, Tomas J., Skarzynski, Dariusz J., Okuda, Kiyoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930584/
https://www.ncbi.nlm.nih.gov/pubmed/24586455
http://dx.doi.org/10.1371/journal.pone.0088953
Descripción
Sumario:In mammals, the corpus luteum (CL) is an essential endocrine gland for the establishment and maintenance of pregnancy. If pregnancy is not established, the CL regresses and disappears rapidly from the ovary. A possible explanation for the rapid disappearance of the CL is that luteal cells are transported from the ovary via lymphatic vessels. Here, we report the presence of cells positive for 3β-hydroxysteroid dehydrogenase (3β-HSD), an enzyme involved in progesterone synthesis, in the lumen of lymphatic vessels at the regressing luteal stage and in the lymphatic fluid collected from the ovarian pedicle ipsilateral to the regressing CL. The 3β-HSD positive cells were alive and contained lipid droplets. The 3β-HSD positive cells in the lymphatic fluid were most abundant at days 22–24 after ovulation. These findings show that live steroidogenic cells are in the lymphatic vessels drained from the CL. The outflow of steroidogenic cells starts at the regressing luteal stage and continues after next ovulation. The overall findings suggest that the complete disappearance of the CL during luteolysis is involved in the outflow of luteal cells from the CL via ovarian lymphatic vessels.