Cargando…
Evidence of a Critical Role for Cellodextrin Transporte 2 (CDT-2) in Both Cellulose and Hemicellulose Degradation and Utilization in Neurospora crassa
CDT-1 and CDT-2 are two cellodextrin transporters discovered in the filamentous fungus Neurospora crassa. Previous studies focused on characterizing the role of these transporters in only a few conditions, including cellulose degradation, and the function of these two transporters is not yet complet...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930720/ https://www.ncbi.nlm.nih.gov/pubmed/24586693 http://dx.doi.org/10.1371/journal.pone.0089330 |
Sumario: | CDT-1 and CDT-2 are two cellodextrin transporters discovered in the filamentous fungus Neurospora crassa. Previous studies focused on characterizing the role of these transporters in only a few conditions, including cellulose degradation, and the function of these two transporters is not yet completely understood. In this study, we show that deletion of cdt-2, but not cdt-1, results in growth defects not only on Avicel but also on xylan. cdt-2 can be highly induced by xylan, and this mutant has a xylodextrin consumption defect. Transcriptomic analysis of the cdt-2 deletion strain on Avicel and xylan showed that major cellulase and hemicellulase genes were significantly down-regulated in the cdt-2 deletion strain and artificial over expression of cdt-2 in N. crassa increased cellulase and hemicellulase production. Together, these data clearly show that CDT-2 plays a critical role in hemicellulose sensing and utilization. This is the first time a sugar transporter has been assigned a function in the hemicellulose degradation pathway. Furthermore, we found that the transcription factor XLR-1 is the major regulator of cdt-2, while cdt-1 is primarily regulated by CLR-1. These results deepen our understanding of the functions of both cellodextrin transporters, particularly for CDT-2. Our study also provides novel insight into the mechanisms for hemicellulose sensing and utilization in N. crassa, and may be applicable to other cellulolytic filamentous fungi. |
---|