Cargando…

Biophysical Controls on Light Response of Net CO(2) Exchange in a Winter Wheat Field in the North China Plain

To investigate the impacts of biophysical factors on light response of net ecosystem exchange (NEE), CO(2) flux was measured using the eddy covariance technique in a winter wheat field in the North China Plain from 2003 to 2006. A rectangular hyperbolic function was used to describe NEE light respon...

Descripción completa

Detalles Bibliográficos
Autores principales: Tong, Xiaojuan, Li, Jun, Yu, Qiang, Lin, Zhonghui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930739/
https://www.ncbi.nlm.nih.gov/pubmed/24586800
http://dx.doi.org/10.1371/journal.pone.0089469
Descripción
Sumario:To investigate the impacts of biophysical factors on light response of net ecosystem exchange (NEE), CO(2) flux was measured using the eddy covariance technique in a winter wheat field in the North China Plain from 2003 to 2006. A rectangular hyperbolic function was used to describe NEE light response. Maximum photosynthetic capacity (P (max)) was 46.6±4.0 µmol CO(2) m(−2) s(−1) and initial light use efficiency (α) 0.059±0.006 µmol µmol(−1) in April−May, two or three times as high as those in March. Stepwise multiple linear regressions showed that P (max) increased with the increase in leaf area index (LAI), canopy conductance (g (c)) and air temperature (T (a)) but declined with increasing vapor pressure deficit (VPD) (P<0.001). The factors influencing P (max) were sorted as LAI, g (c), T (a) and VPD. α was proportional to ln(LAI), g (c), T (a) and VPD (P<0.001). The effects of LAI, g (c) and T (a) on α were larger than that of VPD. When T (a)>25°C or VPD>1.1−1.3 kPa, NEE residual increased with the increase in T (a) and VPD (P<0.001), indicating that temperature and water stress occurred. When g (c) was more than 14 mm s(−1) in March and May and 26 mm s(−1) in April, the NEE residuals decline disappeared, or even turned into an increase in g (c) (P<0.01), implying shifts from stomatal limitation to non-stomatal limitation on NEE. Although the differences between sunny and cloudy sky conditions were unremarkable for light response parameters, simulated net CO(2) uptake under the same radiation intensity averaged 18% higher in cloudy days than in sunny days during the year 2003−2006. It is necessary to include these effects in relevant carbon cycle models to improve our estimation of carbon balance at regional and global scales.