Cargando…
Machine learning for neuroimaging with scikit-learn
Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encodi...
Autores principales: | Abraham, Alexandre, Pedregosa, Fabian, Eickenberg, Michael, Gervais, Philippe, Mueller, Andreas, Kossaifi, Jean, Gramfort, Alexandre, Thirion, Bertrand, Varoquaux, Gaël |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930868/ https://www.ncbi.nlm.nih.gov/pubmed/24600388 http://dx.doi.org/10.3389/fninf.2014.00014 |
Ejemplares similares
-
How machine learning is shaping cognitive neuroimaging
por: Varoquaux, Gael, et al.
Publicado: (2014) -
Machine learning patterns for neuroimaging-genetic studies in the cloud
por: Da Mota, Benoit, et al.
Publicado: (2014) -
Mastering machine learning with scikit-learn: learn to implement and evaluate machine learning solutions with scikit-learn
por: Hackeling, Gavin
Publicado: (2017) -
Scikit-learn cookbook: over 80 recipes for machine learning in Python with scikit-learn
por: Avila, Julian, et al.
Publicado: (2017) -
Scikit-learn: machine learning simplified
por: Garreta, Raúl, et al.
Publicado: (2017)