Cargando…
An experimental point of view on hydration/solvation in halophilic proteins
Protein-solvent interactions govern the behaviors of proteins isolated from extreme halophiles. In this work, we compared the solvent envelopes of two orthologous tetrameric malate dehydrogenases (MalDHs) from halophilic and non-halophilic bacteria. The crystal structure of the MalDH from the non-ha...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930881/ https://www.ncbi.nlm.nih.gov/pubmed/24600446 http://dx.doi.org/10.3389/fmicb.2014.00066 |
_version_ | 1782304601717866496 |
---|---|
author | Talon, Romain Coquelle, Nicolas Madern, Dominique Girard, Eric |
author_facet | Talon, Romain Coquelle, Nicolas Madern, Dominique Girard, Eric |
author_sort | Talon, Romain |
collection | PubMed |
description | Protein-solvent interactions govern the behaviors of proteins isolated from extreme halophiles. In this work, we compared the solvent envelopes of two orthologous tetrameric malate dehydrogenases (MalDHs) from halophilic and non-halophilic bacteria. The crystal structure of the MalDH from the non-halophilic bacterium Chloroflexus aurantiacus (Ca MalDH) solved, de novo, at 1.7 Å resolution exhibits numerous water molecules in its solvation shell. We observed that a large number of these water molecules are arranged in pentagonal polygons in the first hydration shell of Ca MalDH. Some of them are clustered in large networks, which cover non-polar amino acid surface. The crystal structure of MalDH from the extreme halophilic bacterium Salinibacter ruber (Sr) solved at 1.55 Å resolution shows that its surface is strongly enriched in acidic amino acids. The structural comparison of these two models is the first direct observation of the relative impact of acidic surface enrichment on the water structure organization between a halophilic protein and its non-adapted counterpart. The data show that surface acidic amino acids disrupt pentagonal water networks in the hydration shell. These crystallographic observations are discussed with respect to halophilic protein behaviors in solution |
format | Online Article Text |
id | pubmed-3930881 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-39308812014-03-05 An experimental point of view on hydration/solvation in halophilic proteins Talon, Romain Coquelle, Nicolas Madern, Dominique Girard, Eric Front Microbiol Microbiology Protein-solvent interactions govern the behaviors of proteins isolated from extreme halophiles. In this work, we compared the solvent envelopes of two orthologous tetrameric malate dehydrogenases (MalDHs) from halophilic and non-halophilic bacteria. The crystal structure of the MalDH from the non-halophilic bacterium Chloroflexus aurantiacus (Ca MalDH) solved, de novo, at 1.7 Å resolution exhibits numerous water molecules in its solvation shell. We observed that a large number of these water molecules are arranged in pentagonal polygons in the first hydration shell of Ca MalDH. Some of them are clustered in large networks, which cover non-polar amino acid surface. The crystal structure of MalDH from the extreme halophilic bacterium Salinibacter ruber (Sr) solved at 1.55 Å resolution shows that its surface is strongly enriched in acidic amino acids. The structural comparison of these two models is the first direct observation of the relative impact of acidic surface enrichment on the water structure organization between a halophilic protein and its non-adapted counterpart. The data show that surface acidic amino acids disrupt pentagonal water networks in the hydration shell. These crystallographic observations are discussed with respect to halophilic protein behaviors in solution Frontiers Media S.A. 2014-02-21 /pmc/articles/PMC3930881/ /pubmed/24600446 http://dx.doi.org/10.3389/fmicb.2014.00066 Text en Copyright © 2014 Talon, Coquelle, Madern and Girard. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Talon, Romain Coquelle, Nicolas Madern, Dominique Girard, Eric An experimental point of view on hydration/solvation in halophilic proteins |
title | An experimental point of view on hydration/solvation in halophilic proteins |
title_full | An experimental point of view on hydration/solvation in halophilic proteins |
title_fullStr | An experimental point of view on hydration/solvation in halophilic proteins |
title_full_unstemmed | An experimental point of view on hydration/solvation in halophilic proteins |
title_short | An experimental point of view on hydration/solvation in halophilic proteins |
title_sort | experimental point of view on hydration/solvation in halophilic proteins |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930881/ https://www.ncbi.nlm.nih.gov/pubmed/24600446 http://dx.doi.org/10.3389/fmicb.2014.00066 |
work_keys_str_mv | AT talonromain anexperimentalpointofviewonhydrationsolvationinhalophilicproteins AT coquellenicolas anexperimentalpointofviewonhydrationsolvationinhalophilicproteins AT maderndominique anexperimentalpointofviewonhydrationsolvationinhalophilicproteins AT girarderic anexperimentalpointofviewonhydrationsolvationinhalophilicproteins AT talonromain experimentalpointofviewonhydrationsolvationinhalophilicproteins AT coquellenicolas experimentalpointofviewonhydrationsolvationinhalophilicproteins AT maderndominique experimentalpointofviewonhydrationsolvationinhalophilicproteins AT girarderic experimentalpointofviewonhydrationsolvationinhalophilicproteins |