Cargando…
Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913
BACKGROUND: Pseudoalteromonas species are a group of marine gammaproteobacteria frequently found in deep-sea sediments, which may play important roles in deep-sea sediment ecosystem. Although genome sequence analysis of Pseudoalteromonas has revealed some specific features associated with adaptation...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930924/ https://www.ncbi.nlm.nih.gov/pubmed/24450434 http://dx.doi.org/10.1186/1475-2859-13-13 |
_version_ | 1782304608807288832 |
---|---|
author | Yu, Zi-Chao Zhao, Dian-Li Ran, Li-Yuan Mi, Zi-Hao Wu, Zhao-Yu Pang, Xiuhua Zhang, Xi-Ying Su, Hai-Nan Shi, Mei Song, Xiao-Yan Xie, Bin-Bin Qin, Qi-Long Zhou, Bai-Cheng Chen, Xiu-Lan Zhang, Yu-Zhong |
author_facet | Yu, Zi-Chao Zhao, Dian-Li Ran, Li-Yuan Mi, Zi-Hao Wu, Zhao-Yu Pang, Xiuhua Zhang, Xi-Ying Su, Hai-Nan Shi, Mei Song, Xiao-Yan Xie, Bin-Bin Qin, Qi-Long Zhou, Bai-Cheng Chen, Xiu-Lan Zhang, Yu-Zhong |
author_sort | Yu, Zi-Chao |
collection | PubMed |
description | BACKGROUND: Pseudoalteromonas species are a group of marine gammaproteobacteria frequently found in deep-sea sediments, which may play important roles in deep-sea sediment ecosystem. Although genome sequence analysis of Pseudoalteromonas has revealed some specific features associated with adaptation to the extreme deep-sea environment, it is still difficult to study how Pseudoalteromonas adapt to the deep-sea environment due to the lack of a genetic manipulation system. The aim of this study is to develop a genetic system in the deep-sea sedimentary bacterium Pseudoalteromonas sp. SM9913, making it possible to perform gene mutation by homologous recombination. RESULTS: The sensitivity of Pseudoalteromonas sp. SM9913 to antibiotic was investigated and the erythromycin resistance gene was chosen as the selective marker. A shuttle vector pOriT-4Em was constructed and transferred into Pseudoalteromonas sp. SM9913 through intergeneric conjugation with an efficiency of 1.8 × 10(-3), which is high enough to perform the gene knockout assay. A suicide vector pMT was constructed using pOriT-4Em as the bone vector and sacB gene as the counterselective marker. The epsT gene encoding the UDP-glucose lipid carrier transferase was selected as the target gene for inactivation by in-frame deletion. The epsT was in-frame deleted using a two-step integration–segregation strategy after transferring the suicide vector pMT into Pseudoalteromonas sp. SM9913. The ΔepsT mutant showed approximately 73% decrease in the yield of exopolysaccharides, indicating that epsT is an important gene involved in the EPS production of SM9913. CONCLUSIONS: A conjugal transfer system was constructed in Pseudoalteromonas sp. SM9913 with a wide temperature range for selection and a high transfer efficiency, which will lay the foundation of genetic manipulation in this strain. The epsT gene of SM9913 was successfully deleted with no selective marker left in the chromosome of the host, which thus make it possible to knock out other genes in the same host. The construction of a gene knockout system for Pseudoalteromonas sp. SM9913 will contribute to the understanding of the molecular mechanism of how Pseudoalteromonas adapt to the deep-sea environment. |
format | Online Article Text |
id | pubmed-3930924 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-39309242014-02-22 Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913 Yu, Zi-Chao Zhao, Dian-Li Ran, Li-Yuan Mi, Zi-Hao Wu, Zhao-Yu Pang, Xiuhua Zhang, Xi-Ying Su, Hai-Nan Shi, Mei Song, Xiao-Yan Xie, Bin-Bin Qin, Qi-Long Zhou, Bai-Cheng Chen, Xiu-Lan Zhang, Yu-Zhong Microb Cell Fact Research BACKGROUND: Pseudoalteromonas species are a group of marine gammaproteobacteria frequently found in deep-sea sediments, which may play important roles in deep-sea sediment ecosystem. Although genome sequence analysis of Pseudoalteromonas has revealed some specific features associated with adaptation to the extreme deep-sea environment, it is still difficult to study how Pseudoalteromonas adapt to the deep-sea environment due to the lack of a genetic manipulation system. The aim of this study is to develop a genetic system in the deep-sea sedimentary bacterium Pseudoalteromonas sp. SM9913, making it possible to perform gene mutation by homologous recombination. RESULTS: The sensitivity of Pseudoalteromonas sp. SM9913 to antibiotic was investigated and the erythromycin resistance gene was chosen as the selective marker. A shuttle vector pOriT-4Em was constructed and transferred into Pseudoalteromonas sp. SM9913 through intergeneric conjugation with an efficiency of 1.8 × 10(-3), which is high enough to perform the gene knockout assay. A suicide vector pMT was constructed using pOriT-4Em as the bone vector and sacB gene as the counterselective marker. The epsT gene encoding the UDP-glucose lipid carrier transferase was selected as the target gene for inactivation by in-frame deletion. The epsT was in-frame deleted using a two-step integration–segregation strategy after transferring the suicide vector pMT into Pseudoalteromonas sp. SM9913. The ΔepsT mutant showed approximately 73% decrease in the yield of exopolysaccharides, indicating that epsT is an important gene involved in the EPS production of SM9913. CONCLUSIONS: A conjugal transfer system was constructed in Pseudoalteromonas sp. SM9913 with a wide temperature range for selection and a high transfer efficiency, which will lay the foundation of genetic manipulation in this strain. The epsT gene of SM9913 was successfully deleted with no selective marker left in the chromosome of the host, which thus make it possible to knock out other genes in the same host. The construction of a gene knockout system for Pseudoalteromonas sp. SM9913 will contribute to the understanding of the molecular mechanism of how Pseudoalteromonas adapt to the deep-sea environment. BioMed Central 2014-01-22 /pmc/articles/PMC3930924/ /pubmed/24450434 http://dx.doi.org/10.1186/1475-2859-13-13 Text en Copyright © 2014 Yu et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Yu, Zi-Chao Zhao, Dian-Li Ran, Li-Yuan Mi, Zi-Hao Wu, Zhao-Yu Pang, Xiuhua Zhang, Xi-Ying Su, Hai-Nan Shi, Mei Song, Xiao-Yan Xie, Bin-Bin Qin, Qi-Long Zhou, Bai-Cheng Chen, Xiu-Lan Zhang, Yu-Zhong Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913 |
title | Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913 |
title_full | Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913 |
title_fullStr | Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913 |
title_full_unstemmed | Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913 |
title_short | Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913 |
title_sort | development of a genetic system for the deep-sea psychrophilic bacterium pseudoalteromonas sp. sm9913 |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930924/ https://www.ncbi.nlm.nih.gov/pubmed/24450434 http://dx.doi.org/10.1186/1475-2859-13-13 |
work_keys_str_mv | AT yuzichao developmentofageneticsystemforthedeepseapsychrophilicbacteriumpseudoalteromonasspsm9913 AT zhaodianli developmentofageneticsystemforthedeepseapsychrophilicbacteriumpseudoalteromonasspsm9913 AT ranliyuan developmentofageneticsystemforthedeepseapsychrophilicbacteriumpseudoalteromonasspsm9913 AT mizihao developmentofageneticsystemforthedeepseapsychrophilicbacteriumpseudoalteromonasspsm9913 AT wuzhaoyu developmentofageneticsystemforthedeepseapsychrophilicbacteriumpseudoalteromonasspsm9913 AT pangxiuhua developmentofageneticsystemforthedeepseapsychrophilicbacteriumpseudoalteromonasspsm9913 AT zhangxiying developmentofageneticsystemforthedeepseapsychrophilicbacteriumpseudoalteromonasspsm9913 AT suhainan developmentofageneticsystemforthedeepseapsychrophilicbacteriumpseudoalteromonasspsm9913 AT shimei developmentofageneticsystemforthedeepseapsychrophilicbacteriumpseudoalteromonasspsm9913 AT songxiaoyan developmentofageneticsystemforthedeepseapsychrophilicbacteriumpseudoalteromonasspsm9913 AT xiebinbin developmentofageneticsystemforthedeepseapsychrophilicbacteriumpseudoalteromonasspsm9913 AT qinqilong developmentofageneticsystemforthedeepseapsychrophilicbacteriumpseudoalteromonasspsm9913 AT zhoubaicheng developmentofageneticsystemforthedeepseapsychrophilicbacteriumpseudoalteromonasspsm9913 AT chenxiulan developmentofageneticsystemforthedeepseapsychrophilicbacteriumpseudoalteromonasspsm9913 AT zhangyuzhong developmentofageneticsystemforthedeepseapsychrophilicbacteriumpseudoalteromonasspsm9913 |