Cargando…
Interactions Among Glucose Delivery, Transport, and Phosphorylation That Underlie Skeletal Muscle Insulin Resistance in Obesity and Type 2 Diabetes: Studies With Dynamic PET Imaging
Dynamic positron emission tomography (PET) imaging was performed using sequential tracer injections ([(15)O]H(2)O, [(11)C]3-O-methylglucose [3-OMG], and [(18)F]fluorodeoxyglucose [FDG]) to quantify, respectively, skeletal muscle tissue perfusion (glucose delivery), kinetics of bidirectional glucose...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931396/ https://www.ncbi.nlm.nih.gov/pubmed/24222345 http://dx.doi.org/10.2337/db13-1249 |
_version_ | 1782304659732430848 |
---|---|
author | Goodpaster, Bret H. Bertoldo, Alessandra Ng, Jason M. Azuma, Koichiro Pencek, R. Richard Kelley, Carol Price, Julie C. Cobelli, Claudio Kelley, David E. |
author_facet | Goodpaster, Bret H. Bertoldo, Alessandra Ng, Jason M. Azuma, Koichiro Pencek, R. Richard Kelley, Carol Price, Julie C. Cobelli, Claudio Kelley, David E. |
author_sort | Goodpaster, Bret H. |
collection | PubMed |
description | Dynamic positron emission tomography (PET) imaging was performed using sequential tracer injections ([(15)O]H(2)O, [(11)C]3-O-methylglucose [3-OMG], and [(18)F]fluorodeoxyglucose [FDG]) to quantify, respectively, skeletal muscle tissue perfusion (glucose delivery), kinetics of bidirectional glucose transport, and glucose phosphorylation to interrogate the individual contribution and interaction among these steps in muscle insulin resistance (IR) in type 2 diabetes (T2D). PET imaging was performed in normal weight nondiabetic subjects (NW) (n = 5), obese nondiabetic subjects (OB) (n = 6), and obese subjects with T2D (n = 7) during fasting conditions and separately during a 6-h euglycemic insulin infusion at 40 mU·m(−2)·min(−1). Tissue tracer activities were derived specifically within the soleus muscle with PET images and magnetic resonance imaging. During fasting, NW, OB, and T2D subjects had similar [(11)C]3-OMG and [(18)F]FDG uptake despite group differences for tissue perfusion. During insulin-stimulated conditions, IR was clearly evident in T2D (P < 0.01), and [(18)F]FDG uptake by muscle was inversely correlated with systemic IR (P < 0.001). The increase in insulin-stimulated glucose transport was less (P < 0.01) in T2D (twofold) than in NW (sevenfold) or OB (sixfold) subjects. The fractional phosphorylation of [(18)F]FDG during insulin infusion was also significantly lower in T2D (P < 0.01). Dynamic triple-tracer PET imaging indicates that skeletal muscle IR in T2D involves a severe impairment of glucose transport and additional impairment in the efficiency of glucose phosphorylation. |
format | Online Article Text |
id | pubmed-3931396 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-39313962015-03-01 Interactions Among Glucose Delivery, Transport, and Phosphorylation That Underlie Skeletal Muscle Insulin Resistance in Obesity and Type 2 Diabetes: Studies With Dynamic PET Imaging Goodpaster, Bret H. Bertoldo, Alessandra Ng, Jason M. Azuma, Koichiro Pencek, R. Richard Kelley, Carol Price, Julie C. Cobelli, Claudio Kelley, David E. Diabetes Pathophysiology Dynamic positron emission tomography (PET) imaging was performed using sequential tracer injections ([(15)O]H(2)O, [(11)C]3-O-methylglucose [3-OMG], and [(18)F]fluorodeoxyglucose [FDG]) to quantify, respectively, skeletal muscle tissue perfusion (glucose delivery), kinetics of bidirectional glucose transport, and glucose phosphorylation to interrogate the individual contribution and interaction among these steps in muscle insulin resistance (IR) in type 2 diabetes (T2D). PET imaging was performed in normal weight nondiabetic subjects (NW) (n = 5), obese nondiabetic subjects (OB) (n = 6), and obese subjects with T2D (n = 7) during fasting conditions and separately during a 6-h euglycemic insulin infusion at 40 mU·m(−2)·min(−1). Tissue tracer activities were derived specifically within the soleus muscle with PET images and magnetic resonance imaging. During fasting, NW, OB, and T2D subjects had similar [(11)C]3-OMG and [(18)F]FDG uptake despite group differences for tissue perfusion. During insulin-stimulated conditions, IR was clearly evident in T2D (P < 0.01), and [(18)F]FDG uptake by muscle was inversely correlated with systemic IR (P < 0.001). The increase in insulin-stimulated glucose transport was less (P < 0.01) in T2D (twofold) than in NW (sevenfold) or OB (sixfold) subjects. The fractional phosphorylation of [(18)F]FDG during insulin infusion was also significantly lower in T2D (P < 0.01). Dynamic triple-tracer PET imaging indicates that skeletal muscle IR in T2D involves a severe impairment of glucose transport and additional impairment in the efficiency of glucose phosphorylation. American Diabetes Association 2014-03 2014-02-13 /pmc/articles/PMC3931396/ /pubmed/24222345 http://dx.doi.org/10.2337/db13-1249 Text en © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
spellingShingle | Pathophysiology Goodpaster, Bret H. Bertoldo, Alessandra Ng, Jason M. Azuma, Koichiro Pencek, R. Richard Kelley, Carol Price, Julie C. Cobelli, Claudio Kelley, David E. Interactions Among Glucose Delivery, Transport, and Phosphorylation That Underlie Skeletal Muscle Insulin Resistance in Obesity and Type 2 Diabetes: Studies With Dynamic PET Imaging |
title | Interactions Among Glucose Delivery, Transport, and Phosphorylation That Underlie Skeletal Muscle Insulin Resistance in Obesity and Type 2 Diabetes: Studies With Dynamic PET Imaging |
title_full | Interactions Among Glucose Delivery, Transport, and Phosphorylation That Underlie Skeletal Muscle Insulin Resistance in Obesity and Type 2 Diabetes: Studies With Dynamic PET Imaging |
title_fullStr | Interactions Among Glucose Delivery, Transport, and Phosphorylation That Underlie Skeletal Muscle Insulin Resistance in Obesity and Type 2 Diabetes: Studies With Dynamic PET Imaging |
title_full_unstemmed | Interactions Among Glucose Delivery, Transport, and Phosphorylation That Underlie Skeletal Muscle Insulin Resistance in Obesity and Type 2 Diabetes: Studies With Dynamic PET Imaging |
title_short | Interactions Among Glucose Delivery, Transport, and Phosphorylation That Underlie Skeletal Muscle Insulin Resistance in Obesity and Type 2 Diabetes: Studies With Dynamic PET Imaging |
title_sort | interactions among glucose delivery, transport, and phosphorylation that underlie skeletal muscle insulin resistance in obesity and type 2 diabetes: studies with dynamic pet imaging |
topic | Pathophysiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931396/ https://www.ncbi.nlm.nih.gov/pubmed/24222345 http://dx.doi.org/10.2337/db13-1249 |
work_keys_str_mv | AT goodpasterbreth interactionsamongglucosedeliverytransportandphosphorylationthatunderlieskeletalmuscleinsulinresistanceinobesityandtype2diabetesstudieswithdynamicpetimaging AT bertoldoalessandra interactionsamongglucosedeliverytransportandphosphorylationthatunderlieskeletalmuscleinsulinresistanceinobesityandtype2diabetesstudieswithdynamicpetimaging AT ngjasonm interactionsamongglucosedeliverytransportandphosphorylationthatunderlieskeletalmuscleinsulinresistanceinobesityandtype2diabetesstudieswithdynamicpetimaging AT azumakoichiro interactionsamongglucosedeliverytransportandphosphorylationthatunderlieskeletalmuscleinsulinresistanceinobesityandtype2diabetesstudieswithdynamicpetimaging AT pencekrrichard interactionsamongglucosedeliverytransportandphosphorylationthatunderlieskeletalmuscleinsulinresistanceinobesityandtype2diabetesstudieswithdynamicpetimaging AT kelleycarol interactionsamongglucosedeliverytransportandphosphorylationthatunderlieskeletalmuscleinsulinresistanceinobesityandtype2diabetesstudieswithdynamicpetimaging AT pricejuliec interactionsamongglucosedeliverytransportandphosphorylationthatunderlieskeletalmuscleinsulinresistanceinobesityandtype2diabetesstudieswithdynamicpetimaging AT cobelliclaudio interactionsamongglucosedeliverytransportandphosphorylationthatunderlieskeletalmuscleinsulinresistanceinobesityandtype2diabetesstudieswithdynamicpetimaging AT kelleydavide interactionsamongglucosedeliverytransportandphosphorylationthatunderlieskeletalmuscleinsulinresistanceinobesityandtype2diabetesstudieswithdynamicpetimaging |