Cargando…
A Proteomic Study on Molecular Mechanism of Poor Grain-Filling of Rice (Oryza sativa L.) Inferior Spikelets
Cultivars of rice (Oryza sativa L.), especially of the type with large spikelets, often fail to reach the yield potential as expected due to the poor grain-filling on the later flowering inferior spikelets (in contrast to the earlier-flowering superior spikelets). The present study showed that the s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931721/ https://www.ncbi.nlm.nih.gov/pubmed/24586550 http://dx.doi.org/10.1371/journal.pone.0089140 |
_version_ | 1782304703835537408 |
---|---|
author | Zhang, Zhixing Zhao, Hong Tang, Jun Li, Zhong Li, Zhou Chen, Dongmei Lin, Wenxiong |
author_facet | Zhang, Zhixing Zhao, Hong Tang, Jun Li, Zhong Li, Zhou Chen, Dongmei Lin, Wenxiong |
author_sort | Zhang, Zhixing |
collection | PubMed |
description | Cultivars of rice (Oryza sativa L.), especially of the type with large spikelets, often fail to reach the yield potential as expected due to the poor grain-filling on the later flowering inferior spikelets (in contrast to the earlier-flowering superior spikelets). The present study showed that the size and grain weight of superior spikelets (SS) was greater than those of inferior spikelets (IS), and the carbohydrate supply should not be the major problem for the poor grain-filling because there was adequate amount of sucrose in IS at the initial grain-filling stage. High resolution two-dimensional gel electrophoresis (2-DE) in combination with Coomassie-brilliant blue (CBB) and Pro-Q Diamond phosphoprotein fluorescence stain revealed that 123 proteins in abundance and 43 phosphoproteins generated from phosphorylation were significantly different between SS and IS. These proteins and phosphoproteins were involved in different cellular and metabolic processes with a prominently functional skew toward metabolism and protein synthesis/destination. Expression analyses of the proteins and phosphoproteins associated with different functional categories/subcategories indicated that the starch synthesis, central carbon metabolism, N metabolism and cell growth/division were closely related to the poor grain-filling of IS. Functional and expression pattern studies also suggested that 14-3-3 proteins played important roles in IS poor grain-filling by regulating the activity of starch synthesis enzymes. The proteome and phosphoproteome obtained from this study provided a better understanding of the molecular mechanism of the IS poor grain-filling. They were also expected to be highly useful for improving the grain filling of rice. |
format | Online Article Text |
id | pubmed-3931721 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39317212014-02-25 A Proteomic Study on Molecular Mechanism of Poor Grain-Filling of Rice (Oryza sativa L.) Inferior Spikelets Zhang, Zhixing Zhao, Hong Tang, Jun Li, Zhong Li, Zhou Chen, Dongmei Lin, Wenxiong PLoS One Research Article Cultivars of rice (Oryza sativa L.), especially of the type with large spikelets, often fail to reach the yield potential as expected due to the poor grain-filling on the later flowering inferior spikelets (in contrast to the earlier-flowering superior spikelets). The present study showed that the size and grain weight of superior spikelets (SS) was greater than those of inferior spikelets (IS), and the carbohydrate supply should not be the major problem for the poor grain-filling because there was adequate amount of sucrose in IS at the initial grain-filling stage. High resolution two-dimensional gel electrophoresis (2-DE) in combination with Coomassie-brilliant blue (CBB) and Pro-Q Diamond phosphoprotein fluorescence stain revealed that 123 proteins in abundance and 43 phosphoproteins generated from phosphorylation were significantly different between SS and IS. These proteins and phosphoproteins were involved in different cellular and metabolic processes with a prominently functional skew toward metabolism and protein synthesis/destination. Expression analyses of the proteins and phosphoproteins associated with different functional categories/subcategories indicated that the starch synthesis, central carbon metabolism, N metabolism and cell growth/division were closely related to the poor grain-filling of IS. Functional and expression pattern studies also suggested that 14-3-3 proteins played important roles in IS poor grain-filling by regulating the activity of starch synthesis enzymes. The proteome and phosphoproteome obtained from this study provided a better understanding of the molecular mechanism of the IS poor grain-filling. They were also expected to be highly useful for improving the grain filling of rice. Public Library of Science 2014-02-21 /pmc/articles/PMC3931721/ /pubmed/24586550 http://dx.doi.org/10.1371/journal.pone.0089140 Text en © 2014 Zhang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zhang, Zhixing Zhao, Hong Tang, Jun Li, Zhong Li, Zhou Chen, Dongmei Lin, Wenxiong A Proteomic Study on Molecular Mechanism of Poor Grain-Filling of Rice (Oryza sativa L.) Inferior Spikelets |
title | A Proteomic Study on Molecular Mechanism of Poor Grain-Filling of Rice (Oryza sativa L.) Inferior Spikelets |
title_full | A Proteomic Study on Molecular Mechanism of Poor Grain-Filling of Rice (Oryza sativa L.) Inferior Spikelets |
title_fullStr | A Proteomic Study on Molecular Mechanism of Poor Grain-Filling of Rice (Oryza sativa L.) Inferior Spikelets |
title_full_unstemmed | A Proteomic Study on Molecular Mechanism of Poor Grain-Filling of Rice (Oryza sativa L.) Inferior Spikelets |
title_short | A Proteomic Study on Molecular Mechanism of Poor Grain-Filling of Rice (Oryza sativa L.) Inferior Spikelets |
title_sort | proteomic study on molecular mechanism of poor grain-filling of rice (oryza sativa l.) inferior spikelets |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931721/ https://www.ncbi.nlm.nih.gov/pubmed/24586550 http://dx.doi.org/10.1371/journal.pone.0089140 |
work_keys_str_mv | AT zhangzhixing aproteomicstudyonmolecularmechanismofpoorgrainfillingofriceoryzasativalinferiorspikelets AT zhaohong aproteomicstudyonmolecularmechanismofpoorgrainfillingofriceoryzasativalinferiorspikelets AT tangjun aproteomicstudyonmolecularmechanismofpoorgrainfillingofriceoryzasativalinferiorspikelets AT lizhong aproteomicstudyonmolecularmechanismofpoorgrainfillingofriceoryzasativalinferiorspikelets AT lizhou aproteomicstudyonmolecularmechanismofpoorgrainfillingofriceoryzasativalinferiorspikelets AT chendongmei aproteomicstudyonmolecularmechanismofpoorgrainfillingofriceoryzasativalinferiorspikelets AT linwenxiong aproteomicstudyonmolecularmechanismofpoorgrainfillingofriceoryzasativalinferiorspikelets AT zhangzhixing proteomicstudyonmolecularmechanismofpoorgrainfillingofriceoryzasativalinferiorspikelets AT zhaohong proteomicstudyonmolecularmechanismofpoorgrainfillingofriceoryzasativalinferiorspikelets AT tangjun proteomicstudyonmolecularmechanismofpoorgrainfillingofriceoryzasativalinferiorspikelets AT lizhong proteomicstudyonmolecularmechanismofpoorgrainfillingofriceoryzasativalinferiorspikelets AT lizhou proteomicstudyonmolecularmechanismofpoorgrainfillingofriceoryzasativalinferiorspikelets AT chendongmei proteomicstudyonmolecularmechanismofpoorgrainfillingofriceoryzasativalinferiorspikelets AT linwenxiong proteomicstudyonmolecularmechanismofpoorgrainfillingofriceoryzasativalinferiorspikelets |