Cargando…
A reaction norm model for genomic selection using high-dimensional genomic and environmental data
KEY MESSAGE: New methods that incorporate the main and interaction effects of high-dimensional markers and of high-dimensional environmental covariates gave increased prediction accuracy of grain yield in wheat across and within environments. ABSTRACT: In most agricultural crops the effects of genes...
Autores principales: | Jarquín, Diego, Crossa, José, Lacaze, Xavier, Du Cheyron, Philippe, Daucourt, Joëlle, Lorgeou, Josiane, Piraux, François, Guerreiro, Laurent, Pérez, Paulino, Calus, Mario, Burgueño, Juan, de los Campos, Gustavo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931944/ https://www.ncbi.nlm.nih.gov/pubmed/24337101 http://dx.doi.org/10.1007/s00122-013-2243-1 |
Ejemplares similares
-
Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models
por: Cuevas, Jaime, et al.
Publicado: (2016) -
Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction
por: Bandeira e Sousa, Massaine, et al.
Publicado: (2017) -
Genomic Prediction in Maize Breeding Populations with Genotyping-by-Sequencing
por: Crossa, José, et al.
Publicado: (2013) -
Multi-generation genomic prediction of maize yield using parametric and non-parametric sparse selection indices
por: Lopez-Cruz, Marco, et al.
Publicado: (2021) -
Threshold Models for Genome-Enabled Prediction of Ordinal Categorical Traits in Plant Breeding
por: Montesinos-López, Osval A., et al.
Publicado: (2014)