Cargando…
Explicit Finite Difference Methods for the Delay Pseudoparabolic Equations
Finite difference technique is applied to numerical solution of the initial-boundary value problem for the semilinear delay Sobolev or pseudoparabolic equation. By the method of integral identities two-level difference scheme is constructed. For the time integration the implicit rule is being used....
Autores principales: | Amirali, I., Amiraliyev, G. M., Cakir, M., Cimen, E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932269/ https://www.ncbi.nlm.nih.gov/pubmed/24688392 http://dx.doi.org/10.1155/2014/497393 |
Ejemplares similares
-
An Explicit Adaptive Finite Difference Method for the Cahn–Hilliard Equation
por: Ham, Seokjun, et al.
Publicado: (2022) -
An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition
por: Durmaz, Muhammet Enes, et al.
Publicado: (2022) -
Asymptotic Bounds for the Time-Periodic Solutions to the Singularly Perturbed Ordinary Differential Equations
por: Amiraliyev, Gabil M., et al.
Publicado: (2013) -
A hybrid explicit implicit staggered grid finite-difference scheme for the first-order acoustic wave equation modeling
por: Liang, Wenquan, et al.
Publicado: (2022) -
The finite difference method in partial differential equations
por: Mitchell, Andrew Ronald, et al.
Publicado: (1980)