Cargando…

Drosophila as a starting point for developing therapeutics for the rare disease Duchenne Muscular Dystrophy

Progress into developing therapeutics for rare diseases can be accelerated for those diseases that can be modeled in genetically tractable organisms. Here we comment on one disease, Duchenne Muscular Dystrophy (DMD), modeled in Drosophila that brought together disparate lines of research toward the...

Descripción completa

Detalles Bibliográficos
Autores principales: Pantoja, Mario, Ruohola-Baker, Hannele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932943/
https://www.ncbi.nlm.nih.gov/pubmed/25002997
http://dx.doi.org/10.4161/rdis.24995
Descripción
Sumario:Progress into developing therapeutics for rare diseases can be accelerated for those diseases that can be modeled in genetically tractable organisms. Here we comment on one disease, Duchenne Muscular Dystrophy (DMD), modeled in Drosophila that brought together disparate lines of research toward the goal of developing a therapeutic. Though the bioactive lipid sphingosine 1-phosphate (S1P) has been implicated in many anabolic processes in many cell types and tissues, including muscle, this work confirmed the therapeutic potential of assessing this pathway for DMD. Genetic dissection of sphingolipid metabolism showed the suppression of muscle structural and functional defects in flies. Moreover, improvement of muscle defects using known pharmacological agents that raise S1P levels in vivo highlight the potential of Drosophila as a drug-screening tool for DMD. We and others have extended S1P studies into the mouse model of DMD and have shown a partial amelioration of symptoms associated with DMD. Translation of this work to mammals makes the sphingolipid metabolism pathway a promising target for further drug development that may benefit the human condition.