Cargando…
Detection of Lungs Status Using Morphological Complexities of Respiratory Sounds
Traditionally, the clinical diagnosis of a respiratory disease is made from a careful clinical examination including chest auscultation. Objective analysis and automatic interpretation of the lung sound based on its physical characters are strongly warranted to assist clinical practice. In this pape...
Autores principales: | Mondal, Ashok, Bhattacharya, Parthasarathi, Saha, Goutam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933370/ https://www.ncbi.nlm.nih.gov/pubmed/24688364 http://dx.doi.org/10.1155/2014/182938 |
Ejemplares similares
-
An automated tool for localization of heart sound components S1, S2, S3 and S4 in pulmonary sounds using Hilbert transform and Heron’s formula
por: Mondal, Ashok, et al.
Publicado: (2013) -
Automatic Lung Health Screening Using Respiratory Sounds
por: Mukherjee, Himadri, et al.
Publicado: (2021) -
Deep learning models for detecting respiratory pathologies from raw lung auscultation sounds
por: Alqudah, Ali Mohammad, et al.
Publicado: (2022) -
Sleep/Wakefulness Detection Using Tracheal Sounds and Movements
por: Montazeri Ghahjaverestan, Nasim, et al.
Publicado: (2020) -
A Fusion-Based Machine Learning Approach for Autism Detection in Young Children Using Magnetoencephalography Signals
por: Barik, Kasturi, et al.
Publicado: (2022)