Cargando…

A New High-Order Stable Numerical Method for Matrix Inversion

A stable numerical method is proposed for matrix inversion. The new method is accompanied by theoretical proof to illustrate twelfth-order convergence. A discussion of how to achieve the convergence using an appropriate initial value is presented. The application of the new scheme for finding Moore-...

Descripción completa

Detalles Bibliográficos
Autores principales: Haghani, F. Khaksar, Soleymani, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933421/
https://www.ncbi.nlm.nih.gov/pubmed/24688436
http://dx.doi.org/10.1155/2014/830564
_version_ 1782304932097949696
author Haghani, F. Khaksar
Soleymani, F.
author_facet Haghani, F. Khaksar
Soleymani, F.
author_sort Haghani, F. Khaksar
collection PubMed
description A stable numerical method is proposed for matrix inversion. The new method is accompanied by theoretical proof to illustrate twelfth-order convergence. A discussion of how to achieve the convergence using an appropriate initial value is presented. The application of the new scheme for finding Moore-Penrose inverse will also be pointed out analytically. The efficiency of the contributed iterative method is clarified on solving some numerical examples.
format Online
Article
Text
id pubmed-3933421
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-39334212014-03-31 A New High-Order Stable Numerical Method for Matrix Inversion Haghani, F. Khaksar Soleymani, F. ScientificWorldJournal Research Article A stable numerical method is proposed for matrix inversion. The new method is accompanied by theoretical proof to illustrate twelfth-order convergence. A discussion of how to achieve the convergence using an appropriate initial value is presented. The application of the new scheme for finding Moore-Penrose inverse will also be pointed out analytically. The efficiency of the contributed iterative method is clarified on solving some numerical examples. Hindawi Publishing Corporation 2014-02-06 /pmc/articles/PMC3933421/ /pubmed/24688436 http://dx.doi.org/10.1155/2014/830564 Text en Copyright © 2014 F. K. Haghani and F. Soleymani. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Haghani, F. Khaksar
Soleymani, F.
A New High-Order Stable Numerical Method for Matrix Inversion
title A New High-Order Stable Numerical Method for Matrix Inversion
title_full A New High-Order Stable Numerical Method for Matrix Inversion
title_fullStr A New High-Order Stable Numerical Method for Matrix Inversion
title_full_unstemmed A New High-Order Stable Numerical Method for Matrix Inversion
title_short A New High-Order Stable Numerical Method for Matrix Inversion
title_sort new high-order stable numerical method for matrix inversion
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933421/
https://www.ncbi.nlm.nih.gov/pubmed/24688436
http://dx.doi.org/10.1155/2014/830564
work_keys_str_mv AT haghanifkhaksar anewhighorderstablenumericalmethodformatrixinversion
AT soleymanif anewhighorderstablenumericalmethodformatrixinversion
AT haghanifkhaksar newhighorderstablenumericalmethodformatrixinversion
AT soleymanif newhighorderstablenumericalmethodformatrixinversion