Cargando…

Role of Somatic Testicular Cells during Mouse Spermatogenesis in Three-Dimensional Collagen Gel Culture System

OBJECTIVE: Spermatogonial stem cells (SSCs) are the only cell type that can restore fertility to an infertile recipient following transplantation. Much effort has been made to develop a protocol for differentiating isolated SSCs in vitro. Recently, three-dimensional (3D) culture system has been intr...

Descripción completa

Detalles Bibliográficos
Autores principales: Khajavi, Noushafarin, Akbari, Mohammad, Abolhassani, Farid, Dehpour, Ahmad Reza, Koruji, Morteza, Habibi Roudkenar, Mehryar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royan Institute 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933442/
https://www.ncbi.nlm.nih.gov/pubmed/24518977
_version_ 1782304937047228416
author Khajavi, Noushafarin
Akbari, Mohammad
Abolhassani, Farid
Dehpour, Ahmad Reza
Koruji, Morteza
Habibi Roudkenar, Mehryar
author_facet Khajavi, Noushafarin
Akbari, Mohammad
Abolhassani, Farid
Dehpour, Ahmad Reza
Koruji, Morteza
Habibi Roudkenar, Mehryar
author_sort Khajavi, Noushafarin
collection PubMed
description OBJECTIVE: Spermatogonial stem cells (SSCs) are the only cell type that can restore fertility to an infertile recipient following transplantation. Much effort has been made to develop a protocol for differentiating isolated SSCs in vitro. Recently, three-dimensional (3D) culture system has been introduced as an appropriate microenvironment for clonal expansion and differentiation of SSCs. This system provides structural support and multiple options for several manipulation such as addition of different cells. Somatic cells have a critical role in stimulating spermatogenesis. They provide complex cell to cell interaction, transport proteins and produce enzymes and regulatory factors. This study aimed to optimize the culture condition by adding somatic testicular cells to the collagen gel culture system in order to induce spermatogenesis progression. MATERIALS AND METHODS: In this experimental study, the disassociation of SSCs was performed by using a two-step enzymatic digestion of type I collagenase, hyaluronidase and DNase. Somatic testicular cells including Sertoli cells and peritubular cells were obtained after the second digestion. SSCs were isolated by Magnetic Activated Cell Sorting (MACS) using GDNF family receptor alpha-1 (Gfrα-1) antibody. Two experimental designs were investigated. 1. Gfrα-1 positive SSCs were cultured in a collagen solution. 2. Somatic testicular cells were added to the Gfrα-1 positive SSCs in a collagen solution. Spermatogenesis progression was determined after three weeks by staining of synaptonemal complex protein 3 (SCP3)-positive cells. Semi-quantitative Reverse Transcription PCR was undertaken for SCP3 as a meiotic marker and, Crem and Thyroid transcription factor-1 (TTF1) as post meiotic markers. For statistical analysis student t test was performed. RESULTS: Testicular supporter cells increased the expression of meiotic and post meiotic markers and had a positive effect on extensive colony formation. CONCLUSION: Collagen gel culture system supported by somatic testicular cells provides a microenvironment that mimics seminiferous epithelium and induces spermatogenesis in vitro.
format Online
Article
Text
id pubmed-3933442
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Royan Institute
record_format MEDLINE/PubMed
spelling pubmed-39334422014-04-01 Role of Somatic Testicular Cells during Mouse Spermatogenesis in Three-Dimensional Collagen Gel Culture System Khajavi, Noushafarin Akbari, Mohammad Abolhassani, Farid Dehpour, Ahmad Reza Koruji, Morteza Habibi Roudkenar, Mehryar Cell J Original Article OBJECTIVE: Spermatogonial stem cells (SSCs) are the only cell type that can restore fertility to an infertile recipient following transplantation. Much effort has been made to develop a protocol for differentiating isolated SSCs in vitro. Recently, three-dimensional (3D) culture system has been introduced as an appropriate microenvironment for clonal expansion and differentiation of SSCs. This system provides structural support and multiple options for several manipulation such as addition of different cells. Somatic cells have a critical role in stimulating spermatogenesis. They provide complex cell to cell interaction, transport proteins and produce enzymes and regulatory factors. This study aimed to optimize the culture condition by adding somatic testicular cells to the collagen gel culture system in order to induce spermatogenesis progression. MATERIALS AND METHODS: In this experimental study, the disassociation of SSCs was performed by using a two-step enzymatic digestion of type I collagenase, hyaluronidase and DNase. Somatic testicular cells including Sertoli cells and peritubular cells were obtained after the second digestion. SSCs were isolated by Magnetic Activated Cell Sorting (MACS) using GDNF family receptor alpha-1 (Gfrα-1) antibody. Two experimental designs were investigated. 1. Gfrα-1 positive SSCs were cultured in a collagen solution. 2. Somatic testicular cells were added to the Gfrα-1 positive SSCs in a collagen solution. Spermatogenesis progression was determined after three weeks by staining of synaptonemal complex protein 3 (SCP3)-positive cells. Semi-quantitative Reverse Transcription PCR was undertaken for SCP3 as a meiotic marker and, Crem and Thyroid transcription factor-1 (TTF1) as post meiotic markers. For statistical analysis student t test was performed. RESULTS: Testicular supporter cells increased the expression of meiotic and post meiotic markers and had a positive effect on extensive colony formation. CONCLUSION: Collagen gel culture system supported by somatic testicular cells provides a microenvironment that mimics seminiferous epithelium and induces spermatogenesis in vitro. Royan Institute 2014 2014-02-03 /pmc/articles/PMC3933442/ /pubmed/24518977 Text en Any use, distribution, reproduction or abstract of this publication in any medium, with the exception of commercial purposes, is permitted provided the original work is properly cited http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Khajavi, Noushafarin
Akbari, Mohammad
Abolhassani, Farid
Dehpour, Ahmad Reza
Koruji, Morteza
Habibi Roudkenar, Mehryar
Role of Somatic Testicular Cells during Mouse Spermatogenesis in Three-Dimensional Collagen Gel Culture System
title Role of Somatic Testicular Cells during Mouse Spermatogenesis in Three-Dimensional Collagen Gel Culture System
title_full Role of Somatic Testicular Cells during Mouse Spermatogenesis in Three-Dimensional Collagen Gel Culture System
title_fullStr Role of Somatic Testicular Cells during Mouse Spermatogenesis in Three-Dimensional Collagen Gel Culture System
title_full_unstemmed Role of Somatic Testicular Cells during Mouse Spermatogenesis in Three-Dimensional Collagen Gel Culture System
title_short Role of Somatic Testicular Cells during Mouse Spermatogenesis in Three-Dimensional Collagen Gel Culture System
title_sort role of somatic testicular cells during mouse spermatogenesis in three-dimensional collagen gel culture system
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933442/
https://www.ncbi.nlm.nih.gov/pubmed/24518977
work_keys_str_mv AT khajavinoushafarin roleofsomatictesticularcellsduringmousespermatogenesisinthreedimensionalcollagengelculturesystem
AT akbarimohammad roleofsomatictesticularcellsduringmousespermatogenesisinthreedimensionalcollagengelculturesystem
AT abolhassanifarid roleofsomatictesticularcellsduringmousespermatogenesisinthreedimensionalcollagengelculturesystem
AT dehpourahmadreza roleofsomatictesticularcellsduringmousespermatogenesisinthreedimensionalcollagengelculturesystem
AT korujimorteza roleofsomatictesticularcellsduringmousespermatogenesisinthreedimensionalcollagengelculturesystem
AT habibiroudkenarmehryar roleofsomatictesticularcellsduringmousespermatogenesisinthreedimensionalcollagengelculturesystem