Cargando…

An Improved Single Cell Ultrahigh Throughput Screening Method Based on In Vitro Compartmentalization

High-throughput screening is a key technique in discovery and engineering of enzymes. In vitro compartmentalization based fluorescence-activated cell sorting (IVC-FACS) has recently emerged as a powerful tool for ultrahigh-throughput screening of biocatalysts. However, the accuracy of current IVC-FA...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Fuqiang, Xie, Yuan, Huang, Chen, Feng, Yan, Yang, Guangyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933655/
https://www.ncbi.nlm.nih.gov/pubmed/24587033
http://dx.doi.org/10.1371/journal.pone.0089785
Descripción
Sumario:High-throughput screening is a key technique in discovery and engineering of enzymes. In vitro compartmentalization based fluorescence-activated cell sorting (IVC-FACS) has recently emerged as a powerful tool for ultrahigh-throughput screening of biocatalysts. However, the accuracy of current IVC-FACS assays is severely limited by the wide polydispersity of micro-reactors generated by homogenizing. Here, an improved protocol based on membrane-extrusion technique was reported to generate the micro-reactors in a more uniform manner. This crucial improvement enables ultrahigh-throughput screening of enzymatic activity at a speed of >10(8) clones/day with an accuracy that could discriminate as low as two-fold differences in enzymatic activity inside the micro-reactors, which is higher than similar IVC-FACS systems ever have reported. The enzymatic reaction in the micro-reactors has very similar kinetic behavior compared to the bulk reaction system and shows wide dynamic range. By using the modified IVC-FACS, E. coli cells with esterase activity could be enriched 330-fold from large excesses of background cells through a single round of sorting. The utility of this new IVC-FACS system was further illustrated by the directed evolution of thermophilic esterase AFEST. The catalytic activity of the very efficient esterase was further improved by ∼2-fold, resulting in several improved mutants with k (cat)/K (M) values approaching the diffusion-limited efficiency of ∼10(8) M(−1)s(−1).