Cargando…
A Biosensor Based on Immobilization of Horseradish Peroxidase in Chitosan Matrix Cross-linked with Glyoxal for Amperometric Determination of Hydrogen Peroxide
An amperometric biosensor for hydrogen peroxide (H(2)O(2)) was developed via an easy and effective enzyme immobilization method with the “sandwich” configuration: ferrocene-chitosan: HRP: chitosan-glyoxal using a glassy carbon electrode as the basic electrode. In order to prevent the loss of immobil...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933900/ |
Sumario: | An amperometric biosensor for hydrogen peroxide (H(2)O(2)) was developed via an easy and effective enzyme immobilization method with the “sandwich” configuration: ferrocene-chitosan: HRP: chitosan-glyoxal using a glassy carbon electrode as the basic electrode. In order to prevent the loss of immobilized HRP under optimized conditions, the biosensor surface was cross-linked with glyoxal. Ferrocene was selected and immobilized on the glassy carbon electrode surface as a mediator. The fabrication procedure was systematically optimized to improve the biosensor performance. The biosensor had a fast response of less than 10 s to H(2)O(2), with a linear range of 3.5×10(-5) to 1.1×10(-3) M, and a detection limit of 8.0×10(-6) M based on S/N = 3. |
---|