Cargando…

Potential application of in vivo imaging of impaired lymphatic duct to evaluate the severity of pressure ulcer in mouse model

Ischemia-reperfusion (IR) injury is a cause of pressure ulcer. However, a mechanism underlying the IR injury-induced lymphatic vessel damage remains unclear. We investigated the alterations of structure and function of lymphatic ducts in a mouse cutaneous IR model. And we suggested a new method for...

Descripción completa

Detalles Bibliográficos
Autores principales: Kasuya, Akira, Sakabe, Jun-ichi, Tokura, Yoshiki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933905/
https://www.ncbi.nlm.nih.gov/pubmed/24566895
http://dx.doi.org/10.1038/srep04173
Descripción
Sumario:Ischemia-reperfusion (IR) injury is a cause of pressure ulcer. However, a mechanism underlying the IR injury-induced lymphatic vessel damage remains unclear. We investigated the alterations of structure and function of lymphatic ducts in a mouse cutaneous IR model. And we suggested a new method for evaluating the severity of pressure ulcer. Immunohistochemistry showed that lymphatic ducts were totally vanished by IR injury, while blood vessels were relatively preserved. The production of harmful reactive oxygen species (ROS) was increased in injured tissue. In vitro study showed a high vulnerability of lymphatic endothelial cells to ROS. Then we evaluated the impaired lymphatic drainage using an in vivo imaging system for intradermally injected indocyanine green (ICG). The dysfunction of ICG drainage positively correlated with the severity of subsequent cutaneous changes. Quantification of the lymphatic duct dysfunction by this imaging system could be a useful strategy to estimate the severity of pressure ulcer.