Cargando…
The ARF tumor suppressor controls Drosha translation to prevent Ras-driven transformation
ARF is a multifunctional tumor suppressor that acts as both a sensor of oncogenic stimuli and as a key regulator of ribosome biogenesis. Recently, our group established the DEAD-box RNA helicase and microRNA (miRNA) microprocessor accessory subunit, DDX5, as a critical target of basal ARF function....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3934099/ https://www.ncbi.nlm.nih.gov/pubmed/23318441 http://dx.doi.org/10.1038/onc.2012.601 |
_version_ | 1782305034255466496 |
---|---|
author | Kuchenreuther, Michael J. Weber, Jason D. |
author_facet | Kuchenreuther, Michael J. Weber, Jason D. |
author_sort | Kuchenreuther, Michael J. |
collection | PubMed |
description | ARF is a multifunctional tumor suppressor that acts as both a sensor of oncogenic stimuli and as a key regulator of ribosome biogenesis. Recently, our group established the DEAD-box RNA helicase and microRNA (miRNA) microprocessor accessory subunit, DDX5, as a critical target of basal ARF function. To identify other molecular targets of ARF, we focused on known interacting proteins of DDX5 in the microprocessor complex. Drosha, the catalytic core of the microprocessor complex, plays a critical role in the maturation of specific non-coding RNAs, including miRNAs and rRNAs. Here, we report that chronic or acute loss of Arf enhanced Drosha protein expression. This induction did not involve Drosha mRNA transcription or protein stability but rather relied on the increased translation of existing Drosha mRNAs. Enhanced Drosha expression did not alter global miRNA production, but rather modified expression of a subset of miRNAs in the absence of Arf. Elevated Drosha protein levels were required to maintain the increased rRNA synthesis and cellular proliferation observed in the absence of Arf. Arf-deficient cells transformed by oncogenic Ras(V12) were dependent on increased Drosha expression as Drosha knockdown was sufficient to inhibit Ras-dependent cellular transformation. Thus, we propose that ARF regulates Drosha mRNA translation to prevent aberrant cell proliferation and Ras-dependent transformation. |
format | Online Article Text |
id | pubmed-3934099 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
record_format | MEDLINE/PubMed |
spelling | pubmed-39340992014-07-16 The ARF tumor suppressor controls Drosha translation to prevent Ras-driven transformation Kuchenreuther, Michael J. Weber, Jason D. Oncogene Article ARF is a multifunctional tumor suppressor that acts as both a sensor of oncogenic stimuli and as a key regulator of ribosome biogenesis. Recently, our group established the DEAD-box RNA helicase and microRNA (miRNA) microprocessor accessory subunit, DDX5, as a critical target of basal ARF function. To identify other molecular targets of ARF, we focused on known interacting proteins of DDX5 in the microprocessor complex. Drosha, the catalytic core of the microprocessor complex, plays a critical role in the maturation of specific non-coding RNAs, including miRNAs and rRNAs. Here, we report that chronic or acute loss of Arf enhanced Drosha protein expression. This induction did not involve Drosha mRNA transcription or protein stability but rather relied on the increased translation of existing Drosha mRNAs. Enhanced Drosha expression did not alter global miRNA production, but rather modified expression of a subset of miRNAs in the absence of Arf. Elevated Drosha protein levels were required to maintain the increased rRNA synthesis and cellular proliferation observed in the absence of Arf. Arf-deficient cells transformed by oncogenic Ras(V12) were dependent on increased Drosha expression as Drosha knockdown was sufficient to inhibit Ras-dependent cellular transformation. Thus, we propose that ARF regulates Drosha mRNA translation to prevent aberrant cell proliferation and Ras-dependent transformation. 2013-01-14 2014-01-16 /pmc/articles/PMC3934099/ /pubmed/23318441 http://dx.doi.org/10.1038/onc.2012.601 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Kuchenreuther, Michael J. Weber, Jason D. The ARF tumor suppressor controls Drosha translation to prevent Ras-driven transformation |
title | The ARF tumor suppressor controls Drosha translation to prevent Ras-driven transformation |
title_full | The ARF tumor suppressor controls Drosha translation to prevent Ras-driven transformation |
title_fullStr | The ARF tumor suppressor controls Drosha translation to prevent Ras-driven transformation |
title_full_unstemmed | The ARF tumor suppressor controls Drosha translation to prevent Ras-driven transformation |
title_short | The ARF tumor suppressor controls Drosha translation to prevent Ras-driven transformation |
title_sort | arf tumor suppressor controls drosha translation to prevent ras-driven transformation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3934099/ https://www.ncbi.nlm.nih.gov/pubmed/23318441 http://dx.doi.org/10.1038/onc.2012.601 |
work_keys_str_mv | AT kuchenreuthermichaelj thearftumorsuppressorcontrolsdroshatranslationtopreventrasdriventransformation AT weberjasond thearftumorsuppressorcontrolsdroshatranslationtopreventrasdriventransformation AT kuchenreuthermichaelj arftumorsuppressorcontrolsdroshatranslationtopreventrasdriventransformation AT weberjasond arftumorsuppressorcontrolsdroshatranslationtopreventrasdriventransformation |