Cargando…

Roles of Cohesin and Condensin in Chromosome Dynamics During Mammalian Meiosis

Meiosis is a key step for sexual reproduction in which chromosome number is halved by two successive meiotic divisions after a single round of DNA replication. In the first meiotic division (meiosis I), homologous chromosomes pair, synapse, and recombine with their partners in prophase I. As a resul...

Descripción completa

Detalles Bibliográficos
Autor principal: LEE, Jibak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Society for Reproduction and Development 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3934126/
https://www.ncbi.nlm.nih.gov/pubmed/24162807
http://dx.doi.org/10.1262/jrd.2013-068
Descripción
Sumario:Meiosis is a key step for sexual reproduction in which chromosome number is halved by two successive meiotic divisions after a single round of DNA replication. In the first meiotic division (meiosis I), homologous chromosomes pair, synapse, and recombine with their partners in prophase I. As a result, homologous chromosomes are physically connected until metaphase I and then segregated from each other at the onset of anaphase I. In the subsequent second meiotic division (meiosis II), sister chromatids are segregated. Chromosomal abnormality arising during meiosis is one of the major causes of birth defects and congenital disorders in mammals including human and domestic animals. Hence understanding of the mechanism underlying these unique chromosome behavior in meiosis is of great importance. This review focuses on the roles of cohesin and condensin, and their regulation in chromosome dynamics during mammalian meiosis.