Cargando…
An Adaptive Hybrid Algorithm Based on Particle Swarm Optimization and Differential Evolution for Global Optimization
Particle swarm optimization (PSO) and differential evolution (DE) are both efficient and powerful population-based stochastic search techniques for solving optimization problems, which have been widely applied in many scientific and engineering fields. Unfortunately, both of them can easily fly into...
Autores principales: | Yu, Xiaobing, Cao, Jie, Shan, Haiyan, Zhu, Li, Guo, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3934314/ https://www.ncbi.nlm.nih.gov/pubmed/24688370 http://dx.doi.org/10.1155/2014/215472 |
Ejemplares similares
-
A Novel Particle Swarm Optimization Algorithm for Global Optimization
por: Wang, Chun-Feng, et al.
Publicado: (2016) -
A mutation operator self-adaptive differential evolution particle swarm optimization algorithm for USV navigation
por: Gong, Yuehong, et al.
Publicado: (2022) -
PS-FW: A Hybrid Algorithm Based on Particle Swarm and Fireworks for Global Optimization
por: Chen, Shuangqing, et al.
Publicado: (2018) -
Optimal power flow using hybrid firefly and particle swarm optimization algorithm
por: Khan, Abdullah, et al.
Publicado: (2020) -
Swarming genetic algorithm: A nested fully coupled hybrid of genetic algorithm and particle swarm optimization
por: Aivaliotis-Apostolopoulos, Panagiotis, et al.
Publicado: (2022)