Cargando…

Softlithography in Chemical Sensing – Analytes from Molecules to Cells

Imprinting is a flexible and straightforward technique to generate selective sensor materials e.g. for mass-sensitive detection. Inherently, the strategy suits both molecular analytes and entire micro organisms or cells. Imprinted polyurethanes e.g. are capable of distinguishing the different xylene...

Descripción completa

Detalles Bibliográficos
Autores principales: Lieberzeit, Peter A., Glanznig, Gerd, Jenik, Michael, Gazda-Miarecka, Sylwia, Dickert, Franz L., Leidl, Anton
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3934685/
Descripción
Sumario:Imprinting is a flexible and straightforward technique to generate selective sensor materials e.g. for mass-sensitive detection. Inherently, the strategy suits both molecular analytes and entire micro organisms or cells. Imprinted polyurethanes e.g. are capable of distinguishing the different xylene isomers with very appreciable selectivity factors. Combining imprinted titanates with surface transverse wave resonators (STW) leads to a powerful tool for detecting engine oil degradation, which is an excellent example for oxidative deterioration processes in a highly complex matrix. Surface imprints with geometrically equal cavities exhibit clear chemical selectivity, as can e.g. be seen through the example of different human rhinovirus (HRV) serotypes. Another example is a blood group-selective sensor prepared by templating with erythrocyte ghosts. Both the blood-group A and B imprinted material selectively distinguish between blood groups A, B and O, whereas no difference in sensor signal has been observed for AB, where both blood group antigen types are present on the cell surface.