Cargando…
Probing of 2 dimensional confinement-induced structural transitions in amorphous oxide thin film
Whereas the atomic structure of surface of crystals is known to be distinct from that of bulk, experimental evidence for thickness-induced structural transitions in amorphous oxides is lacking. We report the NMR result for amorphous alumina with varying thickness from bulk up to 5 nm, revealing the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935193/ https://www.ncbi.nlm.nih.gov/pubmed/24569515 http://dx.doi.org/10.1038/srep04200 |
Sumario: | Whereas the atomic structure of surface of crystals is known to be distinct from that of bulk, experimental evidence for thickness-induced structural transitions in amorphous oxides is lacking. We report the NMR result for amorphous alumina with varying thickness from bulk up to 5 nm, revealing the nature of structural transitions near amorphous oxide surfaces/interfaces. The coordination environments in the confined amorphous alumina thin film are distinct from those of bulk, highlighted by a decrease in the fractions of high-energy clusters (and thus the degree of disorder) with thickness. The result implies that a wide range of variations in amorphous structures may be identified by controlling its dimensionality. |
---|