Cargando…

Nuclear Localization Signals in Prototype Foamy Viral Integrase for Successive Infection and Replication in Dividing Cells

We identified four basic amino acid residues as nuclear localization signals (NLS) in the C-terminal domain of the prototype foamy viral (PFV) integrase (IN) protein that were essential for viral replication. We constructed seven point mutants in the C-terminal domain by changing the lysine and argi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hossain, Alamgir, Ali, Khadem, Shin, Cha-Gyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korea Society for Molecular and Cellular Biology 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935627/
https://www.ncbi.nlm.nih.gov/pubmed/24598999
http://dx.doi.org/10.14348/molcells.2014.2331
Descripción
Sumario:We identified four basic amino acid residues as nuclear localization signals (NLS) in the C-terminal domain of the prototype foamy viral (PFV) integrase (IN) protein that were essential for viral replication. We constructed seven point mutants in the C-terminal domain by changing the lysine and arginine at residues 305, 308, 313, 315, 318, 324, and 329 to threonine or proline, respectively, to identify residues conferring NLS activity. Our results showed that mutation of these residues had no effect on expression assembly, release of viral particles, or in vitro recombinant IN enzymatic activity. However, mutations at residues 305 (R → T), 313(R → T), 315(R → P), and 329(R → T) lead to the production of defective viral particles with loss of infectivity, whereas non-defective mutations at residues 308(R → T), 318(K → T), and 324(K → T) did not show any adverse effects on subsequent production or release of viral particles. Sub-cellular fractionation and immunostaining for viral protein PFV-IN and PFV-Gag localization revealed predominant cytoplasmic localization of PFV-IN in defective mutants, whereas cytoplasmic and nuclear localization of PFV-IN was observed in wild type and non-defective mutants. However sub-cellular localization of PFV-Gag resulted in predominant nuclear localization and less presence in the cytoplasm of the wild type and non-defective mutants. But defective mutants showed only nuclear localization of Gag. Therefore, we postulate that four basic arginine residues at 305, 313, 315 and 329 confer the karyoplilic properties of PFV-IN and are essential for successful viral integration and replication.