Cargando…
Influence of Bacterial Presence on Biofilm Formation of Candida albicans
PURPOSE: Candida albicans is an opportunistic pathogen that is commonly found in human microflora. Biofilm formation (BF) is known as a major virulence factor of C. albicans. The aim of this study was to examine the influence of bacterial presence on biofilm formation of C. albicans. MATERIALS AND M...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Yonsei University College of Medicine
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936627/ https://www.ncbi.nlm.nih.gov/pubmed/24532517 http://dx.doi.org/10.3349/ymj.2014.55.2.449 |
_version_ | 1782305333801123840 |
---|---|
author | Park, Su Jung Han, Kyoung-Hee Park, Joo Young Choi, Sun Ju Lee, Kyoung-Ho |
author_facet | Park, Su Jung Han, Kyoung-Hee Park, Joo Young Choi, Sun Ju Lee, Kyoung-Ho |
author_sort | Park, Su Jung |
collection | PubMed |
description | PURPOSE: Candida albicans is an opportunistic pathogen that is commonly found in human microflora. Biofilm formation (BF) is known as a major virulence factor of C. albicans. The aim of this study was to examine the influence of bacterial presence on biofilm formation of C. albicans. MATERIALS AND METHODS: The BF of Candida was investigated when it was co-cultured with C. albicans (C. albicans 53, a yeast with a low BF ability, and C. albicans 163, a yeast with high BF ability) and bacteria. BF was assessed with XTT reduction assay. A scanning electron microscope was used to determine the structure of the biofilm, and real-time reverse transcriptase polymerase chain reaction was used to amplify and quantify hyphae-associated genes. RESULTS: Co-culturing with two different types of bacteria increased the BF value. Co-culturing with C. albicans 53 and 163 also increased the BF value compared to the value that was obtained when the C. albicans was cultured individually. However, co-culturing with bacteria decreased the BF value of C. albicans, and the BF of C. albicans 163 was markedly inhibited. The expression of adherence and morphology transition related genes were significantly inhibited by co-culturing with live bacteria. CONCLUSION: Bacteria have a negative effect on the formation of biofilm by C. albicans. This mechanism is the result of the suppression of genes associated with the hyphae transition of C. albicans, and bacteria particles physically affected the biofilm architecture and biofilm formation. |
format | Online Article Text |
id | pubmed-3936627 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Yonsei University College of Medicine |
record_format | MEDLINE/PubMed |
spelling | pubmed-39366272014-03-04 Influence of Bacterial Presence on Biofilm Formation of Candida albicans Park, Su Jung Han, Kyoung-Hee Park, Joo Young Choi, Sun Ju Lee, Kyoung-Ho Yonsei Med J Original Article PURPOSE: Candida albicans is an opportunistic pathogen that is commonly found in human microflora. Biofilm formation (BF) is known as a major virulence factor of C. albicans. The aim of this study was to examine the influence of bacterial presence on biofilm formation of C. albicans. MATERIALS AND METHODS: The BF of Candida was investigated when it was co-cultured with C. albicans (C. albicans 53, a yeast with a low BF ability, and C. albicans 163, a yeast with high BF ability) and bacteria. BF was assessed with XTT reduction assay. A scanning electron microscope was used to determine the structure of the biofilm, and real-time reverse transcriptase polymerase chain reaction was used to amplify and quantify hyphae-associated genes. RESULTS: Co-culturing with two different types of bacteria increased the BF value. Co-culturing with C. albicans 53 and 163 also increased the BF value compared to the value that was obtained when the C. albicans was cultured individually. However, co-culturing with bacteria decreased the BF value of C. albicans, and the BF of C. albicans 163 was markedly inhibited. The expression of adherence and morphology transition related genes were significantly inhibited by co-culturing with live bacteria. CONCLUSION: Bacteria have a negative effect on the formation of biofilm by C. albicans. This mechanism is the result of the suppression of genes associated with the hyphae transition of C. albicans, and bacteria particles physically affected the biofilm architecture and biofilm formation. Yonsei University College of Medicine 2014-03-01 2014-02-10 /pmc/articles/PMC3936627/ /pubmed/24532517 http://dx.doi.org/10.3349/ymj.2014.55.2.449 Text en © Copyright: Yonsei University College of Medicine 2014 http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Park, Su Jung Han, Kyoung-Hee Park, Joo Young Choi, Sun Ju Lee, Kyoung-Ho Influence of Bacterial Presence on Biofilm Formation of Candida albicans |
title | Influence of Bacterial Presence on Biofilm Formation of Candida albicans |
title_full | Influence of Bacterial Presence on Biofilm Formation of Candida albicans |
title_fullStr | Influence of Bacterial Presence on Biofilm Formation of Candida albicans |
title_full_unstemmed | Influence of Bacterial Presence on Biofilm Formation of Candida albicans |
title_short | Influence of Bacterial Presence on Biofilm Formation of Candida albicans |
title_sort | influence of bacterial presence on biofilm formation of candida albicans |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936627/ https://www.ncbi.nlm.nih.gov/pubmed/24532517 http://dx.doi.org/10.3349/ymj.2014.55.2.449 |
work_keys_str_mv | AT parksujung influenceofbacterialpresenceonbiofilmformationofcandidaalbicans AT hankyounghee influenceofbacterialpresenceonbiofilmformationofcandidaalbicans AT parkjooyoung influenceofbacterialpresenceonbiofilmformationofcandidaalbicans AT choisunju influenceofbacterialpresenceonbiofilmformationofcandidaalbicans AT leekyoungho influenceofbacterialpresenceonbiofilmformationofcandidaalbicans |