Cargando…
Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination
Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by ϕC31 integrase. Using six orthogonal attP/attB recombination site pai...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936721/ https://www.ncbi.nlm.nih.gov/pubmed/24225316 http://dx.doi.org/10.1093/nar/gkt1101 |
_version_ | 1782305351174979584 |
---|---|
author | Colloms, Sean D. Merrick, Christine A. Olorunniji, Femi J. Stark, W. Marshall Smith, Margaret C. M. Osbourn, Anne Keasling, Jay D. Rosser, Susan J. |
author_facet | Colloms, Sean D. Merrick, Christine A. Olorunniji, Femi J. Stark, W. Marshall Smith, Margaret C. M. Osbourn, Anne Keasling, Jay D. Rosser, Susan J. |
author_sort | Colloms, Sean D. |
collection | PubMed |
description | Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by ϕC31 integrase. Using six orthogonal attP/attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction. ϕC31 integrase-mediated assembly is highly efficient, allowing production of large libraries suitable for combinatorial gene assembly strategies. The resultant assemblies contain arrays of DNA cassettes separated by recombination sites, which can be used to manipulate the assembly by further recombination. We illustrate the utility of these procedures to (i) assemble functional metabolic pathways containing three, four or five genes; (ii) optimize productivity of two model metabolic pathways by combinatorial assembly with randomization of gene order or ribosome binding site strength; and (iii) modify an assembled metabolic pathway by gene replacement or addition. |
format | Online Article Text |
id | pubmed-3936721 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-39367212014-03-04 Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination Colloms, Sean D. Merrick, Christine A. Olorunniji, Femi J. Stark, W. Marshall Smith, Margaret C. M. Osbourn, Anne Keasling, Jay D. Rosser, Susan J. Nucleic Acids Res Methods Online Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by ϕC31 integrase. Using six orthogonal attP/attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction. ϕC31 integrase-mediated assembly is highly efficient, allowing production of large libraries suitable for combinatorial gene assembly strategies. The resultant assemblies contain arrays of DNA cassettes separated by recombination sites, which can be used to manipulate the assembly by further recombination. We illustrate the utility of these procedures to (i) assemble functional metabolic pathways containing three, four or five genes; (ii) optimize productivity of two model metabolic pathways by combinatorial assembly with randomization of gene order or ribosome binding site strength; and (iii) modify an assembled metabolic pathway by gene replacement or addition. Oxford University Press 2014-02 2013-11-12 /pmc/articles/PMC3936721/ /pubmed/24225316 http://dx.doi.org/10.1093/nar/gkt1101 Text en © The Author(s) 2013. Published by Oxford University Press. http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methods Online Colloms, Sean D. Merrick, Christine A. Olorunniji, Femi J. Stark, W. Marshall Smith, Margaret C. M. Osbourn, Anne Keasling, Jay D. Rosser, Susan J. Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination |
title | Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination |
title_full | Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination |
title_fullStr | Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination |
title_full_unstemmed | Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination |
title_short | Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination |
title_sort | rapid metabolic pathway assembly and modification using serine integrase site-specific recombination |
topic | Methods Online |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936721/ https://www.ncbi.nlm.nih.gov/pubmed/24225316 http://dx.doi.org/10.1093/nar/gkt1101 |
work_keys_str_mv | AT collomsseand rapidmetabolicpathwayassemblyandmodificationusingserineintegrasesitespecificrecombination AT merrickchristinea rapidmetabolicpathwayassemblyandmodificationusingserineintegrasesitespecificrecombination AT olorunnijifemij rapidmetabolicpathwayassemblyandmodificationusingserineintegrasesitespecificrecombination AT starkwmarshall rapidmetabolicpathwayassemblyandmodificationusingserineintegrasesitespecificrecombination AT smithmargaretcm rapidmetabolicpathwayassemblyandmodificationusingserineintegrasesitespecificrecombination AT osbournanne rapidmetabolicpathwayassemblyandmodificationusingserineintegrasesitespecificrecombination AT keaslingjayd rapidmetabolicpathwayassemblyandmodificationusingserineintegrasesitespecificrecombination AT rossersusanj rapidmetabolicpathwayassemblyandmodificationusingserineintegrasesitespecificrecombination |