Cargando…
Joint modelling rationale for chained equations
BACKGROUND: Chained equations imputation is widely used in medical research. It uses a set of conditional models, so is more flexible than joint modelling imputation for the imputation of different types of variables (e.g. binary, ordinal or unordered categorical). However, chained equations imputat...
Autores principales: | Hughes, Rachael A, White, Ian R, Seaman, Shaun R, Carpenter, James R, Tilling, Kate, Sterne, Jonathan AC |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936896/ https://www.ncbi.nlm.nih.gov/pubmed/24559129 http://dx.doi.org/10.1186/1471-2288-14-28 |
Ejemplares similares
-
Appropriate inclusion of interactions was needed to avoid bias in multiple imputation
por: Tilling, Kate, et al.
Publicado: (2016) -
Relative efficiency of joint-model and full-conditional-specification multiple imputation when conditional models are compatible: The general location model
por: Seaman, Shaun R, et al.
Publicado: (2016) -
Estimation of the linear mixed integrated Ornstein–Uhlenbeck model
por: Hughes, Rachael A., et al.
Publicado: (2017) -
Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model
por: Bartlett, Jonathan W, et al.
Publicado: (2015) -
Accounting for missing data in statistical analyses: multiple imputation is not always the answer
por: Hughes, Rachael A, et al.
Publicado: (2019)