Cargando…

Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies

BACKGROUND: Mutations in the gene encoding thymidine kinase 2 (TK2) result in the myopathic form of mitochondrial DNA depletion syndrome which is a mitochondrial encephalomyopathy presenting in children. In order to unveil some of the mechanisms involved in this pathology and to identify potential b...

Descripción completa

Detalles Bibliográficos
Autores principales: Kalko, Susana Graciela, Paco, Sonia, Jou, Cristina, Rodríguez, Maria Angels, Meznaric, Marija, Rogac, Mihael, Jekovec-Vrhovsek, Maja, Sciacco, Monica, Moggio, Maurizio, Fagiolari, Gigliola, De Paepe, Boel, De Meirleir, Linda, Ferrer, Isidre, Roig-Quilis, Manel, Munell, Francina, Montoya, Julio, López-Gallardo, Ester, Ruiz-Pesini, Eduardo, Artuch, Rafael, Montero, Raquel, Torner, Ferran, Nascimento, Andres, Ortez, Carlos, Colomer, Jaume, Jimenez-Mallebrera, Cecilia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937154/
https://www.ncbi.nlm.nih.gov/pubmed/24484525
http://dx.doi.org/10.1186/1471-2164-15-91
_version_ 1782305440987611136
author Kalko, Susana Graciela
Paco, Sonia
Jou, Cristina
Rodríguez, Maria Angels
Meznaric, Marija
Rogac, Mihael
Jekovec-Vrhovsek, Maja
Sciacco, Monica
Moggio, Maurizio
Fagiolari, Gigliola
De Paepe, Boel
De Meirleir, Linda
Ferrer, Isidre
Roig-Quilis, Manel
Munell, Francina
Montoya, Julio
López-Gallardo, Ester
Ruiz-Pesini, Eduardo
Artuch, Rafael
Montero, Raquel
Torner, Ferran
Nascimento, Andres
Ortez, Carlos
Colomer, Jaume
Jimenez-Mallebrera, Cecilia
author_facet Kalko, Susana Graciela
Paco, Sonia
Jou, Cristina
Rodríguez, Maria Angels
Meznaric, Marija
Rogac, Mihael
Jekovec-Vrhovsek, Maja
Sciacco, Monica
Moggio, Maurizio
Fagiolari, Gigliola
De Paepe, Boel
De Meirleir, Linda
Ferrer, Isidre
Roig-Quilis, Manel
Munell, Francina
Montoya, Julio
López-Gallardo, Ester
Ruiz-Pesini, Eduardo
Artuch, Rafael
Montero, Raquel
Torner, Ferran
Nascimento, Andres
Ortez, Carlos
Colomer, Jaume
Jimenez-Mallebrera, Cecilia
author_sort Kalko, Susana Graciela
collection PubMed
description BACKGROUND: Mutations in the gene encoding thymidine kinase 2 (TK2) result in the myopathic form of mitochondrial DNA depletion syndrome which is a mitochondrial encephalomyopathy presenting in children. In order to unveil some of the mechanisms involved in this pathology and to identify potential biomarkers and therapeutic targets we have investigated the gene expression profile of human skeletal muscle deficient for TK2 using cDNA microarrays. RESULTS: We have analysed the whole transcriptome of skeletal muscle from patients with TK2 mutations and compared it to normal muscle and to muscle from patients with other mitochondrial myopathies. We have identified a set of over 700 genes which are differentially expressed in TK2 deficient muscle. Bioinformatics analysis reveals important changes in muscle metabolism, in particular, in glucose and glycogen utilisation, and activation of the starvation response which affects aminoacid and lipid metabolism. We have identified those transcriptional regulators which are likely to be responsible for the observed changes in gene expression. CONCLUSION: Our data point towards the tumor suppressor p53 as the regulator at the centre of a network of genes which are responsible for a coordinated response to TK2 mutations which involves inflammation, activation of muscle cell death by apoptosis and induction of growth and differentiation factor 15 (GDF-15) in muscle and serum. We propose that GDF-15 may represent a potential novel biomarker for mitochondrial dysfunction although further studies are required.
format Online
Article
Text
id pubmed-3937154
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-39371542014-02-28 Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies Kalko, Susana Graciela Paco, Sonia Jou, Cristina Rodríguez, Maria Angels Meznaric, Marija Rogac, Mihael Jekovec-Vrhovsek, Maja Sciacco, Monica Moggio, Maurizio Fagiolari, Gigliola De Paepe, Boel De Meirleir, Linda Ferrer, Isidre Roig-Quilis, Manel Munell, Francina Montoya, Julio López-Gallardo, Ester Ruiz-Pesini, Eduardo Artuch, Rafael Montero, Raquel Torner, Ferran Nascimento, Andres Ortez, Carlos Colomer, Jaume Jimenez-Mallebrera, Cecilia BMC Genomics Research Article BACKGROUND: Mutations in the gene encoding thymidine kinase 2 (TK2) result in the myopathic form of mitochondrial DNA depletion syndrome which is a mitochondrial encephalomyopathy presenting in children. In order to unveil some of the mechanisms involved in this pathology and to identify potential biomarkers and therapeutic targets we have investigated the gene expression profile of human skeletal muscle deficient for TK2 using cDNA microarrays. RESULTS: We have analysed the whole transcriptome of skeletal muscle from patients with TK2 mutations and compared it to normal muscle and to muscle from patients with other mitochondrial myopathies. We have identified a set of over 700 genes which are differentially expressed in TK2 deficient muscle. Bioinformatics analysis reveals important changes in muscle metabolism, in particular, in glucose and glycogen utilisation, and activation of the starvation response which affects aminoacid and lipid metabolism. We have identified those transcriptional regulators which are likely to be responsible for the observed changes in gene expression. CONCLUSION: Our data point towards the tumor suppressor p53 as the regulator at the centre of a network of genes which are responsible for a coordinated response to TK2 mutations which involves inflammation, activation of muscle cell death by apoptosis and induction of growth and differentiation factor 15 (GDF-15) in muscle and serum. We propose that GDF-15 may represent a potential novel biomarker for mitochondrial dysfunction although further studies are required. BioMed Central 2014-02-01 /pmc/articles/PMC3937154/ /pubmed/24484525 http://dx.doi.org/10.1186/1471-2164-15-91 Text en Copyright © 2014 Kalko et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Kalko, Susana Graciela
Paco, Sonia
Jou, Cristina
Rodríguez, Maria Angels
Meznaric, Marija
Rogac, Mihael
Jekovec-Vrhovsek, Maja
Sciacco, Monica
Moggio, Maurizio
Fagiolari, Gigliola
De Paepe, Boel
De Meirleir, Linda
Ferrer, Isidre
Roig-Quilis, Manel
Munell, Francina
Montoya, Julio
López-Gallardo, Ester
Ruiz-Pesini, Eduardo
Artuch, Rafael
Montero, Raquel
Torner, Ferran
Nascimento, Andres
Ortez, Carlos
Colomer, Jaume
Jimenez-Mallebrera, Cecilia
Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies
title Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies
title_full Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies
title_fullStr Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies
title_full_unstemmed Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies
title_short Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies
title_sort transcriptomic profiling of tk2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937154/
https://www.ncbi.nlm.nih.gov/pubmed/24484525
http://dx.doi.org/10.1186/1471-2164-15-91
work_keys_str_mv AT kalkosusanagraciela transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT pacosonia transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT joucristina transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT rodriguezmariaangels transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT meznaricmarija transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT rogacmihael transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT jekovecvrhovsekmaja transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT sciaccomonica transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT moggiomaurizio transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT fagiolarigigliola transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT depaepeboel transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT demeirleirlinda transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT ferrerisidre transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT roigquilismanel transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT munellfrancina transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT montoyajulio transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT lopezgallardoester transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT ruizpesinieduardo transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT artuchrafael transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT monteroraquel transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT tornerferran transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT nascimentoandres transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT ortezcarlos transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT colomerjaume transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies
AT jimenezmallebreracecilia transcriptomicprofilingoftk2deficienthumanskeletalmusclesuggestsaroleforthep53signallingpathwayandidentifiesgrowthanddifferentiationfactor15asapotentialnovelbiomarkerformitochondrialmyopathies