Cargando…

Renal nerve ultrastructural alterations in short term and long term experimental diabetes

BACKGROUND: Despite the evidence that renal hemodynamics is impaired in experimental diabetes, associated with glomeruli structural alterations, renal nerves were not yet investigated in experimental models of diabetes and the contribution of nerve alterations to the diabetic nephropathy remains to...

Descripción completa

Detalles Bibliográficos
Autores principales: Sato, Karina Laurenti, Sanada, Luciana Sayuri, Ferreira, Renata da Silva, de Marco, Maria Carolina del Bem de Barros Oliveti, Castania, Jaci Airton, Salgado, Helio Cesar, Nessler, Randy Alan, Fazan, Valeria Paula Sassoli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937190/
https://www.ncbi.nlm.nih.gov/pubmed/24387617
http://dx.doi.org/10.1186/1471-2202-15-5
_version_ 1782305448422014976
author Sato, Karina Laurenti
Sanada, Luciana Sayuri
Ferreira, Renata da Silva
de Marco, Maria Carolina del Bem de Barros Oliveti
Castania, Jaci Airton
Salgado, Helio Cesar
Nessler, Randy Alan
Fazan, Valeria Paula Sassoli
author_facet Sato, Karina Laurenti
Sanada, Luciana Sayuri
Ferreira, Renata da Silva
de Marco, Maria Carolina del Bem de Barros Oliveti
Castania, Jaci Airton
Salgado, Helio Cesar
Nessler, Randy Alan
Fazan, Valeria Paula Sassoli
author_sort Sato, Karina Laurenti
collection PubMed
description BACKGROUND: Despite the evidence that renal hemodynamics is impaired in experimental diabetes, associated with glomeruli structural alterations, renal nerves were not yet investigated in experimental models of diabetes and the contribution of nerve alterations to the diabetic nephropathy remains to be investigated. We aimed to determine if ultrastructural morphometric parameters of the renal nerves are affected by short term and/or long term experimental diabetes and if insulin treatment reverses these alterations. Left renal nerves were evaluated 15 days or 12 weeks (N = 10 in each group) after induction of diabetes, with a single injection of streptozotocin (STZ). Control rats (N = 10 in each group) were injected with vehicle (citrate buffer). Treated animals (N = 10 in each group) received a single subcutaneous injection of insulin on a daily basis. Arterial pressure, together with the renal nerves activity, was recorded 15 days (short-term) or 12 weeks (long-term) after STZ injection. After the recordings, the renal nerves were dissected, prepared for light and transmission electron microscopy, and fascicle and fibers morphometry were carried out with computer software. RESULTS: The major diabetic alteration on the renal nerves was a small myelinated fibers loss since their number was smaller on chronic diabetic animals, the average morphometric parameters of the myelinated fibers were larger on chronic diabetic animals and distribution histograms of fiber diameter was significantly shifted to the right on chronic diabetic animals. These alterations began early, after 15 days of diabetes induction, associated with a severe mitochondrial damage, and were not prevented by conventional insulin treatment. CONCLUSIONS: The experimental diabetes, induced by a single intravenous injection of STZ, in adult male Wistar rats, caused small fiber loss in the renal nerves, probably due to the early mitochondrial damage. Conventional treatment with insulin was able to correct the weight gain and metabolic changes in diabetic animals, without, however, correcting and / or preventing damage to the thin fibers caused by STZ-induced diabetes. The kidney innervation is impaired in this diabetic model suggesting that alterations of the renal nerves may play a role in the development of the diabetic nephropathy.
format Online
Article
Text
id pubmed-3937190
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-39371902014-02-28 Renal nerve ultrastructural alterations in short term and long term experimental diabetes Sato, Karina Laurenti Sanada, Luciana Sayuri Ferreira, Renata da Silva de Marco, Maria Carolina del Bem de Barros Oliveti Castania, Jaci Airton Salgado, Helio Cesar Nessler, Randy Alan Fazan, Valeria Paula Sassoli BMC Neurosci Research Article BACKGROUND: Despite the evidence that renal hemodynamics is impaired in experimental diabetes, associated with glomeruli structural alterations, renal nerves were not yet investigated in experimental models of diabetes and the contribution of nerve alterations to the diabetic nephropathy remains to be investigated. We aimed to determine if ultrastructural morphometric parameters of the renal nerves are affected by short term and/or long term experimental diabetes and if insulin treatment reverses these alterations. Left renal nerves were evaluated 15 days or 12 weeks (N = 10 in each group) after induction of diabetes, with a single injection of streptozotocin (STZ). Control rats (N = 10 in each group) were injected with vehicle (citrate buffer). Treated animals (N = 10 in each group) received a single subcutaneous injection of insulin on a daily basis. Arterial pressure, together with the renal nerves activity, was recorded 15 days (short-term) or 12 weeks (long-term) after STZ injection. After the recordings, the renal nerves were dissected, prepared for light and transmission electron microscopy, and fascicle and fibers morphometry were carried out with computer software. RESULTS: The major diabetic alteration on the renal nerves was a small myelinated fibers loss since their number was smaller on chronic diabetic animals, the average morphometric parameters of the myelinated fibers were larger on chronic diabetic animals and distribution histograms of fiber diameter was significantly shifted to the right on chronic diabetic animals. These alterations began early, after 15 days of diabetes induction, associated with a severe mitochondrial damage, and were not prevented by conventional insulin treatment. CONCLUSIONS: The experimental diabetes, induced by a single intravenous injection of STZ, in adult male Wistar rats, caused small fiber loss in the renal nerves, probably due to the early mitochondrial damage. Conventional treatment with insulin was able to correct the weight gain and metabolic changes in diabetic animals, without, however, correcting and / or preventing damage to the thin fibers caused by STZ-induced diabetes. The kidney innervation is impaired in this diabetic model suggesting that alterations of the renal nerves may play a role in the development of the diabetic nephropathy. BioMed Central 2014-01-05 /pmc/articles/PMC3937190/ /pubmed/24387617 http://dx.doi.org/10.1186/1471-2202-15-5 Text en Copyright © 2014 Sato et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Sato, Karina Laurenti
Sanada, Luciana Sayuri
Ferreira, Renata da Silva
de Marco, Maria Carolina del Bem de Barros Oliveti
Castania, Jaci Airton
Salgado, Helio Cesar
Nessler, Randy Alan
Fazan, Valeria Paula Sassoli
Renal nerve ultrastructural alterations in short term and long term experimental diabetes
title Renal nerve ultrastructural alterations in short term and long term experimental diabetes
title_full Renal nerve ultrastructural alterations in short term and long term experimental diabetes
title_fullStr Renal nerve ultrastructural alterations in short term and long term experimental diabetes
title_full_unstemmed Renal nerve ultrastructural alterations in short term and long term experimental diabetes
title_short Renal nerve ultrastructural alterations in short term and long term experimental diabetes
title_sort renal nerve ultrastructural alterations in short term and long term experimental diabetes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937190/
https://www.ncbi.nlm.nih.gov/pubmed/24387617
http://dx.doi.org/10.1186/1471-2202-15-5
work_keys_str_mv AT satokarinalaurenti renalnerveultrastructuralalterationsinshorttermandlongtermexperimentaldiabetes
AT sanadalucianasayuri renalnerveultrastructuralalterationsinshorttermandlongtermexperimentaldiabetes
AT ferreirarenatadasilva renalnerveultrastructuralalterationsinshorttermandlongtermexperimentaldiabetes
AT demarcomariacarolinadelbemdebarrosoliveti renalnerveultrastructuralalterationsinshorttermandlongtermexperimentaldiabetes
AT castaniajaciairton renalnerveultrastructuralalterationsinshorttermandlongtermexperimentaldiabetes
AT salgadoheliocesar renalnerveultrastructuralalterationsinshorttermandlongtermexperimentaldiabetes
AT nesslerrandyalan renalnerveultrastructuralalterationsinshorttermandlongtermexperimentaldiabetes
AT fazanvaleriapaulasassoli renalnerveultrastructuralalterationsinshorttermandlongtermexperimentaldiabetes