Cargando…
Stability Indicators in Network Reconstruction
The number of available algorithms to infer a biological network from a dataset of high-throughput measurements is overwhelming and keeps growing. However, evaluating their performance is unfeasible unless a ‘gold standard’ is available to measure how close the reconstructed network is to the ground...
Autores principales: | Filosi, Michele, Visintainer, Roberto, Riccadonna, Samantha, Jurman, Giuseppe, Furlanello, Cesare |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937450/ https://www.ncbi.nlm.nih.gov/pubmed/24587057 http://dx.doi.org/10.1371/journal.pone.0089815 |
Ejemplares similares
-
DTW-MIC Coexpression Networks from Time-Course Data
por: Riccadonna, Samantha, et al.
Publicado: (2016) -
Algebraic Comparison of Partial Lists in Bioinformatics
por: Jurman, Giuseppe, et al.
Publicado: (2012) -
A Comparison of MCC and CEN Error Measures in Multi-Class Prediction
por: Jurman, Giuseppe, et al.
Publicado: (2012) -
RegnANN: Reverse Engineering Gene Networks Using Artificial Neural Networks
por: Grimaldi, Marco, et al.
Publicado: (2011) -
A machine learning pipeline for quantitative phenotype prediction from genotype data
por: Guzzetta, Giorgio, et al.
Publicado: (2010)