Cargando…
Mapping the amino acid properties of constituent nucleoporins onto the yeast nuclear pore complex
Visualization of molecular structures aids in the understanding of structural and functional roles of biological macromolecules. Macromolecular transport between the cell nucleus and cytoplasm is facilitated by the nuclear pore complex (NPC). The ring structure of the NPC is large and contains sever...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937582/ https://www.ncbi.nlm.nih.gov/pubmed/24616561 http://dx.doi.org/10.6026/97320630010094 |
Sumario: | Visualization of molecular structures aids in the understanding of structural and functional roles of biological macromolecules. Macromolecular transport between the cell nucleus and cytoplasm is facilitated by the nuclear pore complex (NPC). The ring structure of the NPC is large and contains several distinct proteins (nucleoporins) which function as a selective gate for the passage of certain molecules into and out of the nucleus. In this note we demonstrate the utility of a python code that allows direct mapping of the physiochemical properties of the constituent nucleoporins on the scaffold of the yeast NPC׳s cytoplasmic view. We expect this tool to be useful for researchers to visualize the NPC based on their physiochemical properties and how it alters when specific mutations are introduced in one or more of the nucleoporins. The code developed using Python is available freely from the authors. |
---|