Cargando…

Within, but not between hands interactions in vibrotactile detection thresholds reflect somatosensory receptive field organization

Detection of a tactile stimulus on one finger is impaired when a concurrent stimulus (masker) is presented on an additional finger of the same or the opposite hand. This phenomenon is known to be finger-specific at the within-hand level. However, whether this specificity is also maintained at the be...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamè, Luigi, Moles, Andrew, Holmes, Nicholas P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937991/
https://www.ncbi.nlm.nih.gov/pubmed/24592252
http://dx.doi.org/10.3389/fpsyg.2014.00174
Descripción
Sumario:Detection of a tactile stimulus on one finger is impaired when a concurrent stimulus (masker) is presented on an additional finger of the same or the opposite hand. This phenomenon is known to be finger-specific at the within-hand level. However, whether this specificity is also maintained at the between hand level is not known. In four experiments, we addressed this issue by combining a Bayesian adaptive staircase procedure quick estimation of threshold (QUEST) with a two-interval forced choice (2IFC) design in order to establish threshold for detecting 200 ms, 100 Hz sinusoidal vibrations applied to the index or little fingertip of either hand (targets). We systematically varied the masker finger (index, middle, ring, or little finger of either hand), while controlling the spatial location of the target and masker stimuli. Detection thresholds varied consistently as a function of the masker finger when the latter was on the same hand (Experiments 1 and 2), but not when on different hands (Experiments 3 and 4). Within the hand, detection thresholds increased for masker fingers closest to the target finger (i.e., middle > ring when the target was index). Between the hands, detection thresholds were higher only when the masker was present on any finger as compared to when the target was presented in isolation. The within hand effect of masker finger is consistent with the segregation of different fingers at the early stages of somatosensory processing, from the periphery to the primary somatosensory cortex (SI). We propose that detection is finger-specific and reflects the organization of somatosensory receptive fields in SI within, but not between the hands.