Cargando…

Long term delivery of pulsed magnetic fields does not alter visual discrimination learning or dendritic spine density in the mouse CA1 pyramidal or dentate gyrus neurons

Repetitive transcranial magnetic stimulation (rTMS) is thought to facilitate brain plasticity. However, few studies address anatomical changes following rTMS in relation to behaviour. We delivered 5 weeks of daily pulsed rTMS stimulation to adult ephrin-A2 (-/-) and wildtype (C57BI/6j) mice (n=10 pe...

Descripción completa

Detalles Bibliográficos
Autores principales: Sykes, Matthew, Makowiecki, Kalina, Rodger, Jennifer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: F1000Research 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938248/
https://www.ncbi.nlm.nih.gov/pubmed/24627788
http://dx.doi.org/10.12688/f1000research.2-180.v2
Descripción
Sumario:Repetitive transcranial magnetic stimulation (rTMS) is thought to facilitate brain plasticity. However, few studies address anatomical changes following rTMS in relation to behaviour. We delivered 5 weeks of daily pulsed rTMS stimulation to adult ephrin-A2 (-/-) and wildtype (C57BI/6j) mice (n=10 per genotype) undergoing a visual learning task and analysed learning performance, as well as spine density, in the dentate gyrus molecular and CA1 pyramidal cell layers in Golgi-stained brain sections. We found that neither learning behaviour, nor hippocampal spine density was affected by long term rTMS. Our negative results highlight the lack of deleterious side effects in normal subjects and are consistent with previous studies suggesting that rTMS has a bigger effect on abnormal or injured brain substrates than on normal/control structures.