Cargando…

A Data-Driven Algorithm Integrating Clinical and Laboratory Features for the Diagnosis and Prognosis of Necrotizing Enterocolitis

BACKGROUND: Necrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of progression model available for NEC, the diagnosis and outcome prediction of NEC is made on clinical grounds. The objective in this study was to de...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Jun, Ling, Xuefeng B., Zhao, Yingzhen, Hu, Zhongkai, Zheng, Xiaolin, Xu, Zhening, Wen, Qiaojun, Kastenberg, Zachary J., Li, Ping, Abdullah, Fizan, Brandt, Mary L., Ehrenkranz, Richard A., Harris, Mary Catherine, Lee, Timothy C., Simpson, B. Joyce, Bowers, Corinna, Moss, R. Lawrence, Sylvester, Karl G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938509/
https://www.ncbi.nlm.nih.gov/pubmed/24587080
http://dx.doi.org/10.1371/journal.pone.0089860
_version_ 1782305615317565440
author Ji, Jun
Ling, Xuefeng B.
Zhao, Yingzhen
Hu, Zhongkai
Zheng, Xiaolin
Xu, Zhening
Wen, Qiaojun
Kastenberg, Zachary J.
Li, Ping
Abdullah, Fizan
Brandt, Mary L.
Ehrenkranz, Richard A.
Harris, Mary Catherine
Lee, Timothy C.
Simpson, B. Joyce
Bowers, Corinna
Moss, R. Lawrence
Sylvester, Karl G.
author_facet Ji, Jun
Ling, Xuefeng B.
Zhao, Yingzhen
Hu, Zhongkai
Zheng, Xiaolin
Xu, Zhening
Wen, Qiaojun
Kastenberg, Zachary J.
Li, Ping
Abdullah, Fizan
Brandt, Mary L.
Ehrenkranz, Richard A.
Harris, Mary Catherine
Lee, Timothy C.
Simpson, B. Joyce
Bowers, Corinna
Moss, R. Lawrence
Sylvester, Karl G.
author_sort Ji, Jun
collection PubMed
description BACKGROUND: Necrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of progression model available for NEC, the diagnosis and outcome prediction of NEC is made on clinical grounds. The objective in this study was to develop and validate new NEC scoring systems for automated staging and prognostic forecasting. STUDY DESIGN: A six-center consortium of university based pediatric teaching hospitals prospectively collected data on infants under suspicion of having NEC over a 7-year period. A database comprised of 520 infants was utilized to develop the NEC diagnostic and prognostic models by dividing the entire dataset into training and testing cohorts of demographically matched subjects. Developed on the training cohort and validated on the blind testing cohort, our multivariate analyses led to NEC scoring metrics integrating clinical data. RESULTS: Machine learning using clinical and laboratory results at the time of clinical presentation led to two NEC models: (1) an automated diagnostic classification scheme; (2) a dynamic prognostic method for risk-stratifying patients into low, intermediate and high NEC scores to determine the risk for disease progression. We submit that dynamic risk stratification of infants with NEC will assist clinicians in determining the need for additional diagnostic testing and guide potential therapies in a dynamic manner. ALGORITHM AVAILABILITY: http://translationalmedicine.stanford.edu/cgi-bin/NEC/index.pl and smartphone application upon request.
format Online
Article
Text
id pubmed-3938509
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-39385092014-03-04 A Data-Driven Algorithm Integrating Clinical and Laboratory Features for the Diagnosis and Prognosis of Necrotizing Enterocolitis Ji, Jun Ling, Xuefeng B. Zhao, Yingzhen Hu, Zhongkai Zheng, Xiaolin Xu, Zhening Wen, Qiaojun Kastenberg, Zachary J. Li, Ping Abdullah, Fizan Brandt, Mary L. Ehrenkranz, Richard A. Harris, Mary Catherine Lee, Timothy C. Simpson, B. Joyce Bowers, Corinna Moss, R. Lawrence Sylvester, Karl G. PLoS One Research Article BACKGROUND: Necrotizing enterocolitis (NEC) is a major source of neonatal morbidity and mortality. Since there is no specific diagnostic test or risk of progression model available for NEC, the diagnosis and outcome prediction of NEC is made on clinical grounds. The objective in this study was to develop and validate new NEC scoring systems for automated staging and prognostic forecasting. STUDY DESIGN: A six-center consortium of university based pediatric teaching hospitals prospectively collected data on infants under suspicion of having NEC over a 7-year period. A database comprised of 520 infants was utilized to develop the NEC diagnostic and prognostic models by dividing the entire dataset into training and testing cohorts of demographically matched subjects. Developed on the training cohort and validated on the blind testing cohort, our multivariate analyses led to NEC scoring metrics integrating clinical data. RESULTS: Machine learning using clinical and laboratory results at the time of clinical presentation led to two NEC models: (1) an automated diagnostic classification scheme; (2) a dynamic prognostic method for risk-stratifying patients into low, intermediate and high NEC scores to determine the risk for disease progression. We submit that dynamic risk stratification of infants with NEC will assist clinicians in determining the need for additional diagnostic testing and guide potential therapies in a dynamic manner. ALGORITHM AVAILABILITY: http://translationalmedicine.stanford.edu/cgi-bin/NEC/index.pl and smartphone application upon request. Public Library of Science 2014-02-28 /pmc/articles/PMC3938509/ /pubmed/24587080 http://dx.doi.org/10.1371/journal.pone.0089860 Text en © 2014 Ji et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Ji, Jun
Ling, Xuefeng B.
Zhao, Yingzhen
Hu, Zhongkai
Zheng, Xiaolin
Xu, Zhening
Wen, Qiaojun
Kastenberg, Zachary J.
Li, Ping
Abdullah, Fizan
Brandt, Mary L.
Ehrenkranz, Richard A.
Harris, Mary Catherine
Lee, Timothy C.
Simpson, B. Joyce
Bowers, Corinna
Moss, R. Lawrence
Sylvester, Karl G.
A Data-Driven Algorithm Integrating Clinical and Laboratory Features for the Diagnosis and Prognosis of Necrotizing Enterocolitis
title A Data-Driven Algorithm Integrating Clinical and Laboratory Features for the Diagnosis and Prognosis of Necrotizing Enterocolitis
title_full A Data-Driven Algorithm Integrating Clinical and Laboratory Features for the Diagnosis and Prognosis of Necrotizing Enterocolitis
title_fullStr A Data-Driven Algorithm Integrating Clinical and Laboratory Features for the Diagnosis and Prognosis of Necrotizing Enterocolitis
title_full_unstemmed A Data-Driven Algorithm Integrating Clinical and Laboratory Features for the Diagnosis and Prognosis of Necrotizing Enterocolitis
title_short A Data-Driven Algorithm Integrating Clinical and Laboratory Features for the Diagnosis and Prognosis of Necrotizing Enterocolitis
title_sort data-driven algorithm integrating clinical and laboratory features for the diagnosis and prognosis of necrotizing enterocolitis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938509/
https://www.ncbi.nlm.nih.gov/pubmed/24587080
http://dx.doi.org/10.1371/journal.pone.0089860
work_keys_str_mv AT jijun adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT lingxuefengb adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT zhaoyingzhen adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT huzhongkai adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT zhengxiaolin adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT xuzhening adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT wenqiaojun adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT kastenbergzacharyj adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT liping adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT abdullahfizan adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT brandtmaryl adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT ehrenkranzricharda adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT harrismarycatherine adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT leetimothyc adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT simpsonbjoyce adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT bowerscorinna adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT mossrlawrence adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT sylvesterkarlg adatadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT jijun datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT lingxuefengb datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT zhaoyingzhen datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT huzhongkai datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT zhengxiaolin datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT xuzhening datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT wenqiaojun datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT kastenbergzacharyj datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT liping datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT abdullahfizan datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT brandtmaryl datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT ehrenkranzricharda datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT harrismarycatherine datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT leetimothyc datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT simpsonbjoyce datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT bowerscorinna datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT mossrlawrence datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis
AT sylvesterkarlg datadrivenalgorithmintegratingclinicalandlaboratoryfeaturesforthediagnosisandprognosisofnecrotizingenterocolitis