Cargando…
Divergent Distribution of the Sensor Kinase CosS in Non-Thermotolerant Campylobacter Species and Its Functional Incompatibility with the Response Regulator CosR of Campylobacter jejuni
Two-component signal transduction systems are commonly composed of a sensor histidine kinase and a cognate response regulator, modulating gene expression in response to environmental changes through a phosphorylation-dependent process. CosR is an OmpR-type response regulator essential for the viabil...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938529/ https://www.ncbi.nlm.nih.gov/pubmed/24587027 http://dx.doi.org/10.1371/journal.pone.0089774 |
Sumario: | Two-component signal transduction systems are commonly composed of a sensor histidine kinase and a cognate response regulator, modulating gene expression in response to environmental changes through a phosphorylation-dependent process. CosR is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a major foodborne pathogenic species causing human gastroenteritis. Although CosR is a response regulator, its cognate sensor kinase has not been identified in C. jejuni. In this study, DNA sequence analysis of the cosR flanking regions revealed that a gene encoding a putative sensor kinase, which we named cosS, is prevalent in non-thermotolerant Campylobacter spp., but not in thermotolerant campylobacters. Phosphorylation assays indicated that C. fetus CosS rapidly autophosphorylates and then phosphorylates C. fetus CosR, suggesting that the CosRS system constitutes a paired two-component signal transduction system in C. fetus. However, C. fetus CosS does not phosphorylate C. jejuni CosR, suggesting that CosR may have different regulatory cascades between thermotolerant and non-thermotolerant Campylobacter species. Comparison of CosR homolog amino acid sequences showed that the conserved phosphorylation residue (D51), which is present in all non-thermotolerant Campylobacter spp., is absent from the CosR homologs of thermotolerant Campylobacter species. However, C. jejuni CosR was not phosphorylated by C. fetus CosS even after site-directed mutagenesis of N51D, implying that C. jejuni CosR may possibly function phosphorylation-independently. In addition, the results of cosS mutational analysis indicated that CosS is not associated with the temperature dependence of the Campylobacter spp. despite its unique divergent distribution only in non-thermotolerant campylobacters. The findings in this study strongly suggest that thermotolerant and non-thermotolerant Campylobacter spp. have different signal sensing mechanisms associated with the CosR regulation. |
---|