Cargando…

Shaping a lateralized brain: Asymmetrical light experience modulates access to visual interhemispheric information in pigeons

Cerebral asymmetries result from hemispheric specialization and interhemispheric communication pattern that develop in close gene-environment interactions. To gain a deeper understanding of developmental and functional interrelations, we investigated interhemispheric information exchange in pigeons,...

Descripción completa

Detalles Bibliográficos
Autores principales: Letzner, Sara, Patzke, Nina, Verhaal, Josine, Manns, Martina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3939453/
https://www.ncbi.nlm.nih.gov/pubmed/24584671
http://dx.doi.org/10.1038/srep04253
Descripción
Sumario:Cerebral asymmetries result from hemispheric specialization and interhemispheric communication pattern that develop in close gene-environment interactions. To gain a deeper understanding of developmental and functional interrelations, we investigated interhemispheric information exchange in pigeons, which possess a lateralized visual system that develops in response to asymmetrical ontogenetic light stimulation. We monocularly trained pigeons with or without embryonic light experience in color discriminations whereby they learned another pair of colors with each eye. Thereby, information from the ipsilateral eye had to be transferred. Monocular tests confronting the animals with trained and transferred color pairs demonstrated that embryonic light stimulation modulates the balance of asymmetrical handling of transfer information. Stronger embryonic stimulation of the left hemisphere significantly enhanced access to interhemispheric visual information, thereby reversing the right-hemispheric advantage that develops in the absence of embryonic light experience. These data support the critical role of environmental factors in molding a functionally lateralized brain.