Cargando…

How the structure of the large subunit controls function in an oxygen-tolerant [NiFe]-hydrogenase

Salmonella enterica is an opportunistic pathogen that produces a [NiFe]-hydrogenase under aerobic conditions. In the present study, genetic engineering approaches were used to facilitate isolation of this enzyme, termed Hyd-5. The crystal structure was determined to a resolution of 3.2 Å and the hyd...

Descripción completa

Detalles Bibliográficos
Autores principales: Bowman, Lisa, Flanagan, Lindsey, Fyfe, Paul K., Parkin, Alison, Hunter, William N., Sargent, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940037/
https://www.ncbi.nlm.nih.gov/pubmed/24428762
http://dx.doi.org/10.1042/BJ20131520
Descripción
Sumario:Salmonella enterica is an opportunistic pathogen that produces a [NiFe]-hydrogenase under aerobic conditions. In the present study, genetic engineering approaches were used to facilitate isolation of this enzyme, termed Hyd-5. The crystal structure was determined to a resolution of 3.2 Å and the hydro-genase was observed to comprise associated large and small subunits. The structure indicated that His(229) from the large subunit was close to the proximal [4Fe–3S] cluster in the small subunit. In addition, His(229) was observed to lie close to a buried glutamic acid (Glu(73)), which is conserved in oxygen-tolerant hydrogenases. His(229) and Glu(73) of the Hyd-5 large subunit were found to be important in both hydrogen oxidation activity and the oxygen-tolerance mechanism. Substitution of His(229) or Glu(73) with alanine led to a loss in the ability of Hyd-5 to oxidize hydrogen in air. Furthermore, the H229A variant was found to have lost the overpotential requirement for activity that is always observed with oxygen-tolerant [NiFe]-hydrogenases. It is possible that His(229) has a role in stabilizing the super-oxidized form of the proximal cluster in the presence of oxygen, and it is proposed that Glu(73)could play a supporting role in fine-tuning the chemistry of His(229) to enable this function.