Cargando…

Structure of Bacillus subtilis γ-glutamyl­transpeptidase in complex with acivicin: diversity of the binding mode of a classical and electrophilic active-site-directed glutamate analogue

γ-Glutamyltranspeptidase (GGT) is an enzyme that plays a central role in glutathione metabolism, and acivicin is a classical inhibitor of GGT. Here, the structure of acivicin bound to Bacillus subtilis GGT determined by X-ray crystallography to 1.8 Å resolution is presented, in which it binds to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Ida, Tomoyo, Suzuki, Hideyuki, Fukuyama, Keiichi, Hiratake, Jun, Wada, Kei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940202/
https://www.ncbi.nlm.nih.gov/pubmed/24531494
http://dx.doi.org/10.1107/S1399004713031222
Descripción
Sumario:γ-Glutamyltranspeptidase (GGT) is an enzyme that plays a central role in glutathione metabolism, and acivicin is a classical inhibitor of GGT. Here, the structure of acivicin bound to Bacillus subtilis GGT determined by X-ray crystallography to 1.8 Å resolution is presented, in which it binds to the active site in a similar manner to that in Helicobacter pylori GGT, but in a different binding mode to that in Escherichia coli GGT. In B. subtilis GGT, acivicin is bound covalently through its C3 atom with sp (2) hybridization to Thr403 O(γ), the catalytic nucleophile of the enzyme. The results show that acivicin-binding sites are common, but the binding manners and orientations of its five-membered dihydroisoxazole ring are diverse in the binding pockets of GGTs.