Cargando…
Circular Dichroism and Fluorescence Spectroscopy of Cysteinyl-tRNA Synthetase from Halobacterium salinarum ssp. NRC-1 Demonstrates that Group I Cations Are Particularly Effective in Providing Structure and Stability to This Halophilic Protein
Proteins from extremophiles have the ability to fold and remain stable in their extreme environment. Here, we investigate the presence of this effect in the cysteinyl-tRNA synthetase from Halobacterium salinarum ssp. NRC-1 (NRC-1), which was used as a model halophilic protein. The effects of salt on...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940603/ https://www.ncbi.nlm.nih.gov/pubmed/24594651 http://dx.doi.org/10.1371/journal.pone.0089452 |
_version_ | 1782305798198657024 |
---|---|
author | Reed, Christopher J. Bushnell, Sarah Evilia, Caryn |
author_facet | Reed, Christopher J. Bushnell, Sarah Evilia, Caryn |
author_sort | Reed, Christopher J. |
collection | PubMed |
description | Proteins from extremophiles have the ability to fold and remain stable in their extreme environment. Here, we investigate the presence of this effect in the cysteinyl-tRNA synthetase from Halobacterium salinarum ssp. NRC-1 (NRC-1), which was used as a model halophilic protein. The effects of salt on the structure and stability of NRC-1 and of E. coli CysRS were investigated through far-UV circular dichroism (CD) spectroscopy, fluorescence spectroscopy, and thermal denaturation melts. The CD of NRC-1 CysRS was examined in different group I and group II chloride salts to examine the effects of the metal ions. Potassium was observed to have the strongest effect on NRC-1 CysRS structure, with the other group I salts having reduced strength. The group II salts had little effect on the protein. This suggests that the halophilic adaptations in this protein are mediated by potassium. CD and fluorescence spectra showed structural changes taking place in NRC-1 CysRS over the concentration range of 0–3 M KCl, while the structure of E. coli CysRS was relatively unaffected. Salt was also shown to increase the thermal stability of NRC-1 CysRS since the melt temperature of the CysRS from NRC-1 was increased in the presence of high salt, whereas the E. coli enzyme showed a decrease. By characterizing these interactions, this study not only explains the stability of halophilic proteins in extremes of salt, but also helps us to understand why and how group I salts stabilize proteins in general. |
format | Online Article Text |
id | pubmed-3940603 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39406032014-03-06 Circular Dichroism and Fluorescence Spectroscopy of Cysteinyl-tRNA Synthetase from Halobacterium salinarum ssp. NRC-1 Demonstrates that Group I Cations Are Particularly Effective in Providing Structure and Stability to This Halophilic Protein Reed, Christopher J. Bushnell, Sarah Evilia, Caryn PLoS One Research Article Proteins from extremophiles have the ability to fold and remain stable in their extreme environment. Here, we investigate the presence of this effect in the cysteinyl-tRNA synthetase from Halobacterium salinarum ssp. NRC-1 (NRC-1), which was used as a model halophilic protein. The effects of salt on the structure and stability of NRC-1 and of E. coli CysRS were investigated through far-UV circular dichroism (CD) spectroscopy, fluorescence spectroscopy, and thermal denaturation melts. The CD of NRC-1 CysRS was examined in different group I and group II chloride salts to examine the effects of the metal ions. Potassium was observed to have the strongest effect on NRC-1 CysRS structure, with the other group I salts having reduced strength. The group II salts had little effect on the protein. This suggests that the halophilic adaptations in this protein are mediated by potassium. CD and fluorescence spectra showed structural changes taking place in NRC-1 CysRS over the concentration range of 0–3 M KCl, while the structure of E. coli CysRS was relatively unaffected. Salt was also shown to increase the thermal stability of NRC-1 CysRS since the melt temperature of the CysRS from NRC-1 was increased in the presence of high salt, whereas the E. coli enzyme showed a decrease. By characterizing these interactions, this study not only explains the stability of halophilic proteins in extremes of salt, but also helps us to understand why and how group I salts stabilize proteins in general. Public Library of Science 2014-03-03 /pmc/articles/PMC3940603/ /pubmed/24594651 http://dx.doi.org/10.1371/journal.pone.0089452 Text en © 2014 Reed et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Reed, Christopher J. Bushnell, Sarah Evilia, Caryn Circular Dichroism and Fluorescence Spectroscopy of Cysteinyl-tRNA Synthetase from Halobacterium salinarum ssp. NRC-1 Demonstrates that Group I Cations Are Particularly Effective in Providing Structure and Stability to This Halophilic Protein |
title | Circular Dichroism and Fluorescence Spectroscopy of Cysteinyl-tRNA Synthetase from Halobacterium salinarum ssp. NRC-1 Demonstrates that Group I Cations Are Particularly Effective in Providing Structure and Stability to This Halophilic Protein |
title_full | Circular Dichroism and Fluorescence Spectroscopy of Cysteinyl-tRNA Synthetase from Halobacterium salinarum ssp. NRC-1 Demonstrates that Group I Cations Are Particularly Effective in Providing Structure and Stability to This Halophilic Protein |
title_fullStr | Circular Dichroism and Fluorescence Spectroscopy of Cysteinyl-tRNA Synthetase from Halobacterium salinarum ssp. NRC-1 Demonstrates that Group I Cations Are Particularly Effective in Providing Structure and Stability to This Halophilic Protein |
title_full_unstemmed | Circular Dichroism and Fluorescence Spectroscopy of Cysteinyl-tRNA Synthetase from Halobacterium salinarum ssp. NRC-1 Demonstrates that Group I Cations Are Particularly Effective in Providing Structure and Stability to This Halophilic Protein |
title_short | Circular Dichroism and Fluorescence Spectroscopy of Cysteinyl-tRNA Synthetase from Halobacterium salinarum ssp. NRC-1 Demonstrates that Group I Cations Are Particularly Effective in Providing Structure and Stability to This Halophilic Protein |
title_sort | circular dichroism and fluorescence spectroscopy of cysteinyl-trna synthetase from halobacterium salinarum ssp. nrc-1 demonstrates that group i cations are particularly effective in providing structure and stability to this halophilic protein |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940603/ https://www.ncbi.nlm.nih.gov/pubmed/24594651 http://dx.doi.org/10.1371/journal.pone.0089452 |
work_keys_str_mv | AT reedchristopherj circulardichroismandfluorescencespectroscopyofcysteinyltrnasynthetasefromhalobacteriumsalinarumsspnrc1demonstratesthatgroupicationsareparticularlyeffectiveinprovidingstructureandstabilitytothishalophilicprotein AT bushnellsarah circulardichroismandfluorescencespectroscopyofcysteinyltrnasynthetasefromhalobacteriumsalinarumsspnrc1demonstratesthatgroupicationsareparticularlyeffectiveinprovidingstructureandstabilitytothishalophilicprotein AT eviliacaryn circulardichroismandfluorescencespectroscopyofcysteinyltrnasynthetasefromhalobacteriumsalinarumsspnrc1demonstratesthatgroupicationsareparticularlyeffectiveinprovidingstructureandstabilitytothishalophilicprotein |