Cargando…
An Algorithm for Finding Biologically Significant Features in Microarray Data Based on A Priori Manifold Learning
Microarray databases are a large source of genetic data, which, upon proper analysis, could enhance our understanding of biology and medicine. Many microarray experiments have been designed to investigate the genetic mechanisms of cancer, and analytical approaches have been applied in order to class...
Autores principales: | Hira, Zena M., Trigeorgis, George, Gillies, Duncan F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940899/ https://www.ncbi.nlm.nih.gov/pubmed/24595155 http://dx.doi.org/10.1371/journal.pone.0090562 |
Ejemplares similares
-
A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data
por: Hira, Zena M., et al.
Publicado: (2015) -
Identifying Significant Features in Cancer Methylation Data Using Gene Pathway Segmentation
por: Hira, Zena M., et al.
Publicado: (2016) -
Genetic algorithm-based feature selection with manifold learning for cancer classification using microarray data
por: Wang, Zixuan, et al.
Publicado: (2023) -
A Priori-Based Subarray Selection Algorithm for DOA Estimation
por: Zeng, Linghao, et al.
Publicado: (2020) -
Optimization Algorithms on Matrix Manifolds
por: Absil, P -A, et al.
Publicado: (2009)