Cargando…
Gait-Related Brain Activity in People with Parkinson Disease with Freezing of Gait
Approximately 50% of people with Parkinson disease experience freezing of gait, described as a transient inability to produce effective stepping. Complex gait tasks such as turning typically elicit freezing more commonly than simple gait tasks, such as forward walking. Despite the frequency of this...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940915/ https://www.ncbi.nlm.nih.gov/pubmed/24595265 http://dx.doi.org/10.1371/journal.pone.0090634 |
_version_ | 1782305835006820352 |
---|---|
author | Peterson, Daniel S. Pickett, Kristen A. Duncan, Ryan Perlmutter, Joel Earhart, Gammon M. |
author_facet | Peterson, Daniel S. Pickett, Kristen A. Duncan, Ryan Perlmutter, Joel Earhart, Gammon M. |
author_sort | Peterson, Daniel S. |
collection | PubMed |
description | Approximately 50% of people with Parkinson disease experience freezing of gait, described as a transient inability to produce effective stepping. Complex gait tasks such as turning typically elicit freezing more commonly than simple gait tasks, such as forward walking. Despite the frequency of this debilitating and dangerous symptom, the brain mechanisms underlying freezing remain unclear. Gait imagery during functional magnetic resonance imaging permits investigation of brain activity associated with locomotion. We used this approach to better understand neural function during gait-like tasks in people with Parkinson disease who experience freezing- “FoG+” and people who do not experience freezing- ”FoG−“. Nine FoG+ and nine FoG− imagined complex gait tasks (turning, backward walking), simple gait tasks (forward walking), and quiet standing during measurements of blood oxygen level dependent (BOLD) signal. Changes in BOLD signal (i.e. beta weights) during imagined walking and imagined standing were analyzed across FoG+ and FoG− groups in locomotor brain regions including supplementary motor area, globus pallidus, putamen, mesencephalic locomotor region, and cerebellar locomotor region. Beta weights in locomotor regions did not differ for complex tasks compared to simple tasks in either group. Across imagined gait tasks, FoG+ demonstrated significantly lower beta weights in the right globus pallidus with respect to FoG−. FoG+ also showed trends toward lower beta weights in other right-hemisphere locomotor regions (supplementary motor area, mesencephalic locomotor region). Finally, during imagined stand, FoG+ exhibited lower beta weights in the cerebellar locomotor region with respect to FoG−. These data support previous results suggesting FoG+ exhibit dysfunction in a number of cortical and subcortical regions, possibly with asymmetric dysfunction towards the right hemisphere. |
format | Online Article Text |
id | pubmed-3940915 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39409152014-03-06 Gait-Related Brain Activity in People with Parkinson Disease with Freezing of Gait Peterson, Daniel S. Pickett, Kristen A. Duncan, Ryan Perlmutter, Joel Earhart, Gammon M. PLoS One Research Article Approximately 50% of people with Parkinson disease experience freezing of gait, described as a transient inability to produce effective stepping. Complex gait tasks such as turning typically elicit freezing more commonly than simple gait tasks, such as forward walking. Despite the frequency of this debilitating and dangerous symptom, the brain mechanisms underlying freezing remain unclear. Gait imagery during functional magnetic resonance imaging permits investigation of brain activity associated with locomotion. We used this approach to better understand neural function during gait-like tasks in people with Parkinson disease who experience freezing- “FoG+” and people who do not experience freezing- ”FoG−“. Nine FoG+ and nine FoG− imagined complex gait tasks (turning, backward walking), simple gait tasks (forward walking), and quiet standing during measurements of blood oxygen level dependent (BOLD) signal. Changes in BOLD signal (i.e. beta weights) during imagined walking and imagined standing were analyzed across FoG+ and FoG− groups in locomotor brain regions including supplementary motor area, globus pallidus, putamen, mesencephalic locomotor region, and cerebellar locomotor region. Beta weights in locomotor regions did not differ for complex tasks compared to simple tasks in either group. Across imagined gait tasks, FoG+ demonstrated significantly lower beta weights in the right globus pallidus with respect to FoG−. FoG+ also showed trends toward lower beta weights in other right-hemisphere locomotor regions (supplementary motor area, mesencephalic locomotor region). Finally, during imagined stand, FoG+ exhibited lower beta weights in the cerebellar locomotor region with respect to FoG−. These data support previous results suggesting FoG+ exhibit dysfunction in a number of cortical and subcortical regions, possibly with asymmetric dysfunction towards the right hemisphere. Public Library of Science 2014-03-03 /pmc/articles/PMC3940915/ /pubmed/24595265 http://dx.doi.org/10.1371/journal.pone.0090634 Text en © 2014 Peterson et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Peterson, Daniel S. Pickett, Kristen A. Duncan, Ryan Perlmutter, Joel Earhart, Gammon M. Gait-Related Brain Activity in People with Parkinson Disease with Freezing of Gait |
title | Gait-Related Brain Activity in People with Parkinson Disease with Freezing of Gait |
title_full | Gait-Related Brain Activity in People with Parkinson Disease with Freezing of Gait |
title_fullStr | Gait-Related Brain Activity in People with Parkinson Disease with Freezing of Gait |
title_full_unstemmed | Gait-Related Brain Activity in People with Parkinson Disease with Freezing of Gait |
title_short | Gait-Related Brain Activity in People with Parkinson Disease with Freezing of Gait |
title_sort | gait-related brain activity in people with parkinson disease with freezing of gait |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940915/ https://www.ncbi.nlm.nih.gov/pubmed/24595265 http://dx.doi.org/10.1371/journal.pone.0090634 |
work_keys_str_mv | AT petersondaniels gaitrelatedbrainactivityinpeoplewithparkinsondiseasewithfreezingofgait AT pickettkristena gaitrelatedbrainactivityinpeoplewithparkinsondiseasewithfreezingofgait AT duncanryan gaitrelatedbrainactivityinpeoplewithparkinsondiseasewithfreezingofgait AT perlmutterjoel gaitrelatedbrainactivityinpeoplewithparkinsondiseasewithfreezingofgait AT earhartgammonm gaitrelatedbrainactivityinpeoplewithparkinsondiseasewithfreezingofgait |