Cargando…

Regulatory modules controlling maize inflorescence architecture

Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that...

Descripción completa

Detalles Bibliográficos
Autores principales: Eveland, Andrea L., Goldshmidt, Alexander, Pautler, Michael, Morohashi, Kengo, Liseron-Monfils, Christophe, Lewis, Michael W., Kumari, Sunita, Hiraga, Susumu, Yang, Fang, Unger-Wallace, Erica, Olson, Andrew, Hake, Sarah, Vollbrecht, Erik, Grotewold, Erich, Ware, Doreen, Jackson, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941108/
https://www.ncbi.nlm.nih.gov/pubmed/24307553
http://dx.doi.org/10.1101/gr.166397.113
_version_ 1782305871286501376
author Eveland, Andrea L.
Goldshmidt, Alexander
Pautler, Michael
Morohashi, Kengo
Liseron-Monfils, Christophe
Lewis, Michael W.
Kumari, Sunita
Hiraga, Susumu
Yang, Fang
Unger-Wallace, Erica
Olson, Andrew
Hake, Sarah
Vollbrecht, Erik
Grotewold, Erich
Ware, Doreen
Jackson, David
author_facet Eveland, Andrea L.
Goldshmidt, Alexander
Pautler, Michael
Morohashi, Kengo
Liseron-Monfils, Christophe
Lewis, Michael W.
Kumari, Sunita
Hiraga, Susumu
Yang, Fang
Unger-Wallace, Erica
Olson, Andrew
Hake, Sarah
Vollbrecht, Erik
Grotewold, Erich
Ware, Doreen
Jackson, David
author_sort Eveland, Andrea L.
collection PubMed
description Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that modulate determinacy, specifically the decision to allow branch growth. We characterized developmental transitions by associating spatiotemporal expression profiles with morphological changes resulting from genetic perturbations that disrupt steps in a pathway controlling branching. Developmental dynamics of genes targeted in vivo by the transcription factor RAMOSA1, a key regulator of determinacy, revealed potential mechanisms for repressing branches in distinct stem cell populations, including interactions with KNOTTED1, a master regulator of stem cell maintenance. Our results uncover discrete developmental modules that function in determining grass-specific morphology and provide a basis for targeted crop improvement and translation to other cereal crops with comparable inflorescence architectures.
format Online
Article
Text
id pubmed-3941108
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-39411082014-09-01 Regulatory modules controlling maize inflorescence architecture Eveland, Andrea L. Goldshmidt, Alexander Pautler, Michael Morohashi, Kengo Liseron-Monfils, Christophe Lewis, Michael W. Kumari, Sunita Hiraga, Susumu Yang, Fang Unger-Wallace, Erica Olson, Andrew Hake, Sarah Vollbrecht, Erik Grotewold, Erich Ware, Doreen Jackson, David Genome Res Research Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that modulate determinacy, specifically the decision to allow branch growth. We characterized developmental transitions by associating spatiotemporal expression profiles with morphological changes resulting from genetic perturbations that disrupt steps in a pathway controlling branching. Developmental dynamics of genes targeted in vivo by the transcription factor RAMOSA1, a key regulator of determinacy, revealed potential mechanisms for repressing branches in distinct stem cell populations, including interactions with KNOTTED1, a master regulator of stem cell maintenance. Our results uncover discrete developmental modules that function in determining grass-specific morphology and provide a basis for targeted crop improvement and translation to other cereal crops with comparable inflorescence architectures. Cold Spring Harbor Laboratory Press 2014-03 /pmc/articles/PMC3941108/ /pubmed/24307553 http://dx.doi.org/10.1101/gr.166397.113 Text en © 2014 Eveland et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by-nc/3.0/ This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported), as described at http://creativecommons.org/licenses/by-nc/3.0/.
spellingShingle Research
Eveland, Andrea L.
Goldshmidt, Alexander
Pautler, Michael
Morohashi, Kengo
Liseron-Monfils, Christophe
Lewis, Michael W.
Kumari, Sunita
Hiraga, Susumu
Yang, Fang
Unger-Wallace, Erica
Olson, Andrew
Hake, Sarah
Vollbrecht, Erik
Grotewold, Erich
Ware, Doreen
Jackson, David
Regulatory modules controlling maize inflorescence architecture
title Regulatory modules controlling maize inflorescence architecture
title_full Regulatory modules controlling maize inflorescence architecture
title_fullStr Regulatory modules controlling maize inflorescence architecture
title_full_unstemmed Regulatory modules controlling maize inflorescence architecture
title_short Regulatory modules controlling maize inflorescence architecture
title_sort regulatory modules controlling maize inflorescence architecture
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941108/
https://www.ncbi.nlm.nih.gov/pubmed/24307553
http://dx.doi.org/10.1101/gr.166397.113
work_keys_str_mv AT evelandandreal regulatorymodulescontrollingmaizeinflorescencearchitecture
AT goldshmidtalexander regulatorymodulescontrollingmaizeinflorescencearchitecture
AT pautlermichael regulatorymodulescontrollingmaizeinflorescencearchitecture
AT morohashikengo regulatorymodulescontrollingmaizeinflorescencearchitecture
AT liseronmonfilschristophe regulatorymodulescontrollingmaizeinflorescencearchitecture
AT lewismichaelw regulatorymodulescontrollingmaizeinflorescencearchitecture
AT kumarisunita regulatorymodulescontrollingmaizeinflorescencearchitecture
AT hiragasusumu regulatorymodulescontrollingmaizeinflorescencearchitecture
AT yangfang regulatorymodulescontrollingmaizeinflorescencearchitecture
AT ungerwallaceerica regulatorymodulescontrollingmaizeinflorescencearchitecture
AT olsonandrew regulatorymodulescontrollingmaizeinflorescencearchitecture
AT hakesarah regulatorymodulescontrollingmaizeinflorescencearchitecture
AT vollbrechterik regulatorymodulescontrollingmaizeinflorescencearchitecture
AT grotewolderich regulatorymodulescontrollingmaizeinflorescencearchitecture
AT waredoreen regulatorymodulescontrollingmaizeinflorescencearchitecture
AT jacksondavid regulatorymodulescontrollingmaizeinflorescencearchitecture