Cargando…
Regulatory modules controlling maize inflorescence architecture
Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941108/ https://www.ncbi.nlm.nih.gov/pubmed/24307553 http://dx.doi.org/10.1101/gr.166397.113 |
_version_ | 1782305871286501376 |
---|---|
author | Eveland, Andrea L. Goldshmidt, Alexander Pautler, Michael Morohashi, Kengo Liseron-Monfils, Christophe Lewis, Michael W. Kumari, Sunita Hiraga, Susumu Yang, Fang Unger-Wallace, Erica Olson, Andrew Hake, Sarah Vollbrecht, Erik Grotewold, Erich Ware, Doreen Jackson, David |
author_facet | Eveland, Andrea L. Goldshmidt, Alexander Pautler, Michael Morohashi, Kengo Liseron-Monfils, Christophe Lewis, Michael W. Kumari, Sunita Hiraga, Susumu Yang, Fang Unger-Wallace, Erica Olson, Andrew Hake, Sarah Vollbrecht, Erik Grotewold, Erich Ware, Doreen Jackson, David |
author_sort | Eveland, Andrea L. |
collection | PubMed |
description | Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that modulate determinacy, specifically the decision to allow branch growth. We characterized developmental transitions by associating spatiotemporal expression profiles with morphological changes resulting from genetic perturbations that disrupt steps in a pathway controlling branching. Developmental dynamics of genes targeted in vivo by the transcription factor RAMOSA1, a key regulator of determinacy, revealed potential mechanisms for repressing branches in distinct stem cell populations, including interactions with KNOTTED1, a master regulator of stem cell maintenance. Our results uncover discrete developmental modules that function in determining grass-specific morphology and provide a basis for targeted crop improvement and translation to other cereal crops with comparable inflorescence architectures. |
format | Online Article Text |
id | pubmed-3941108 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-39411082014-09-01 Regulatory modules controlling maize inflorescence architecture Eveland, Andrea L. Goldshmidt, Alexander Pautler, Michael Morohashi, Kengo Liseron-Monfils, Christophe Lewis, Michael W. Kumari, Sunita Hiraga, Susumu Yang, Fang Unger-Wallace, Erica Olson, Andrew Hake, Sarah Vollbrecht, Erik Grotewold, Erich Ware, Doreen Jackson, David Genome Res Research Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that modulate determinacy, specifically the decision to allow branch growth. We characterized developmental transitions by associating spatiotemporal expression profiles with morphological changes resulting from genetic perturbations that disrupt steps in a pathway controlling branching. Developmental dynamics of genes targeted in vivo by the transcription factor RAMOSA1, a key regulator of determinacy, revealed potential mechanisms for repressing branches in distinct stem cell populations, including interactions with KNOTTED1, a master regulator of stem cell maintenance. Our results uncover discrete developmental modules that function in determining grass-specific morphology and provide a basis for targeted crop improvement and translation to other cereal crops with comparable inflorescence architectures. Cold Spring Harbor Laboratory Press 2014-03 /pmc/articles/PMC3941108/ /pubmed/24307553 http://dx.doi.org/10.1101/gr.166397.113 Text en © 2014 Eveland et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by-nc/3.0/ This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported), as described at http://creativecommons.org/licenses/by-nc/3.0/. |
spellingShingle | Research Eveland, Andrea L. Goldshmidt, Alexander Pautler, Michael Morohashi, Kengo Liseron-Monfils, Christophe Lewis, Michael W. Kumari, Sunita Hiraga, Susumu Yang, Fang Unger-Wallace, Erica Olson, Andrew Hake, Sarah Vollbrecht, Erik Grotewold, Erich Ware, Doreen Jackson, David Regulatory modules controlling maize inflorescence architecture |
title | Regulatory modules controlling maize inflorescence architecture |
title_full | Regulatory modules controlling maize inflorescence architecture |
title_fullStr | Regulatory modules controlling maize inflorescence architecture |
title_full_unstemmed | Regulatory modules controlling maize inflorescence architecture |
title_short | Regulatory modules controlling maize inflorescence architecture |
title_sort | regulatory modules controlling maize inflorescence architecture |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941108/ https://www.ncbi.nlm.nih.gov/pubmed/24307553 http://dx.doi.org/10.1101/gr.166397.113 |
work_keys_str_mv | AT evelandandreal regulatorymodulescontrollingmaizeinflorescencearchitecture AT goldshmidtalexander regulatorymodulescontrollingmaizeinflorescencearchitecture AT pautlermichael regulatorymodulescontrollingmaizeinflorescencearchitecture AT morohashikengo regulatorymodulescontrollingmaizeinflorescencearchitecture AT liseronmonfilschristophe regulatorymodulescontrollingmaizeinflorescencearchitecture AT lewismichaelw regulatorymodulescontrollingmaizeinflorescencearchitecture AT kumarisunita regulatorymodulescontrollingmaizeinflorescencearchitecture AT hiragasusumu regulatorymodulescontrollingmaizeinflorescencearchitecture AT yangfang regulatorymodulescontrollingmaizeinflorescencearchitecture AT ungerwallaceerica regulatorymodulescontrollingmaizeinflorescencearchitecture AT olsonandrew regulatorymodulescontrollingmaizeinflorescencearchitecture AT hakesarah regulatorymodulescontrollingmaizeinflorescencearchitecture AT vollbrechterik regulatorymodulescontrollingmaizeinflorescencearchitecture AT grotewolderich regulatorymodulescontrollingmaizeinflorescencearchitecture AT waredoreen regulatorymodulescontrollingmaizeinflorescencearchitecture AT jacksondavid regulatorymodulescontrollingmaizeinflorescencearchitecture |