Cargando…
How to Design PET Experiments to Study Neurochemistry: Application to Alcoholism
Positron Emission Tomography (PET) (and the related Single Photon Emission Computed Tomography) is a powerful imaging tool with a molecular specificity and sensitivity that are unique among imaging modalities. PET excels in the study of neurochemistry in three ways: 1) It can detect and quantify neu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
YJBM
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941463/ https://www.ncbi.nlm.nih.gov/pubmed/24600335 |
_version_ | 1782305926508707840 |
---|---|
author | Morris, Evan D. Lucas, Molly V. Petrulli, J. Ryan Cosgrove, Kelly P. |
author_facet | Morris, Evan D. Lucas, Molly V. Petrulli, J. Ryan Cosgrove, Kelly P. |
author_sort | Morris, Evan D. |
collection | PubMed |
description | Positron Emission Tomography (PET) (and the related Single Photon Emission Computed Tomography) is a powerful imaging tool with a molecular specificity and sensitivity that are unique among imaging modalities. PET excels in the study of neurochemistry in three ways: 1) It can detect and quantify neuroreceptor molecules; 2) it can detect and quantify changes in neurotransmitters; and 3) it can detect and quantify exogenous drugs delivered to the brain. To carry out any of these applications, the user must harness the power of kinetic modeling. Further, the quality of the information gained is only as good as the soundness of the experimental design. This article reviews the concepts behind the three main uses of PET, the rationale behind kinetic modeling of PET data, and some of the key considerations when planning a PET experiment. Finally, some examples of PET imaging related to the study of alcoholism are discussed and critiqued. |
format | Online Article Text |
id | pubmed-3941463 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | YJBM |
record_format | MEDLINE/PubMed |
spelling | pubmed-39414632014-03-05 How to Design PET Experiments to Study Neurochemistry: Application to Alcoholism Morris, Evan D. Lucas, Molly V. Petrulli, J. Ryan Cosgrove, Kelly P. Yale J Biol Med Focus: Microscopy and Imaging Positron Emission Tomography (PET) (and the related Single Photon Emission Computed Tomography) is a powerful imaging tool with a molecular specificity and sensitivity that are unique among imaging modalities. PET excels in the study of neurochemistry in three ways: 1) It can detect and quantify neuroreceptor molecules; 2) it can detect and quantify changes in neurotransmitters; and 3) it can detect and quantify exogenous drugs delivered to the brain. To carry out any of these applications, the user must harness the power of kinetic modeling. Further, the quality of the information gained is only as good as the soundness of the experimental design. This article reviews the concepts behind the three main uses of PET, the rationale behind kinetic modeling of PET data, and some of the key considerations when planning a PET experiment. Finally, some examples of PET imaging related to the study of alcoholism are discussed and critiqued. YJBM 2014-03-05 /pmc/articles/PMC3941463/ /pubmed/24600335 Text en Copyright ©2014, Yale Journal of Biology and Medicine https://creativecommons.org/licenses/by-nc/3.0/This is an open access article distributed under the terms of the Creative Commons CC BY-NC license, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited. You may not use the material for commercial purposes. |
spellingShingle | Focus: Microscopy and Imaging Morris, Evan D. Lucas, Molly V. Petrulli, J. Ryan Cosgrove, Kelly P. How to Design PET Experiments to Study Neurochemistry: Application to Alcoholism |
title | How to Design PET Experiments to Study Neurochemistry: Application to Alcoholism
|
title_full | How to Design PET Experiments to Study Neurochemistry: Application to Alcoholism
|
title_fullStr | How to Design PET Experiments to Study Neurochemistry: Application to Alcoholism
|
title_full_unstemmed | How to Design PET Experiments to Study Neurochemistry: Application to Alcoholism
|
title_short | How to Design PET Experiments to Study Neurochemistry: Application to Alcoholism
|
title_sort | how to design pet experiments to study neurochemistry: application to alcoholism |
topic | Focus: Microscopy and Imaging |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941463/ https://www.ncbi.nlm.nih.gov/pubmed/24600335 |
work_keys_str_mv | AT morrisevand howtodesignpetexperimentstostudyneurochemistryapplicationtoalcoholism AT lucasmollyv howtodesignpetexperimentstostudyneurochemistryapplicationtoalcoholism AT petrullijryan howtodesignpetexperimentstostudyneurochemistryapplicationtoalcoholism AT cosgrovekellyp howtodesignpetexperimentstostudyneurochemistryapplicationtoalcoholism |