Cargando…
Oral Session 03: CNS Risk
Exposure to space radiation may have impacts on brain function, either during or following missions. It is most important to determine how low doses of protons and high-LET irradiation elicit changes in brain function. Within this framework, the role of oxidative stress should also be assessed, as w...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941503/ http://dx.doi.org/10.1093/jrr/rrt207 |
Sumario: | Exposure to space radiation may have impacts on brain function, either during or following missions. It is most important to determine how low doses of protons and high-LET irradiation elicit changes in brain function. Within this framework, the role of oxidative stress should also be assessed, as well as other possible interaction mechanisms involving, e.g., genetic, environmental, and sex-dependent risk factors. The hippocampus is particularly susceptible to radiation. It plays an essential role in memory formation and consolidation and is one of the most investigated brain components for its responses to radiation. The hippocampus is also one of the first brain structures to be damaged in the pathogenesis of Alzheimer's disease, an important potential late impairment following irradiation. In ‘Section 3: CNS risk’, six papers have been presented focused on these issues. For details the reader is directed to the specific papers. Here a very short summary follows. |
---|