Cargando…

Phenotyping date palm varieties via leaflet cross-sectional imaging and artificial neural network application

BACKGROUND: True date palms (Phoenix dactylifera L.) are impressive trees and have served as an indispensable source of food for mankind in tropical and subtropical countries for centuries. The aim of this study is to differentiate date palm tree varieties by analysing leaflet cross sections with te...

Descripción completa

Detalles Bibliográficos
Autores principales: Arinkin, Vladimir, Digel, Ilya, Porst, Dariusz, Artmann, Aysegül Temiz, Artmann, Gerhard M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941935/
https://www.ncbi.nlm.nih.gov/pubmed/24564551
http://dx.doi.org/10.1186/1471-2105-15-55
Descripción
Sumario:BACKGROUND: True date palms (Phoenix dactylifera L.) are impressive trees and have served as an indispensable source of food for mankind in tropical and subtropical countries for centuries. The aim of this study is to differentiate date palm tree varieties by analysing leaflet cross sections with technical/optical methods and artificial neural networks (ANN). RESULTS: Fluorescence microscopy images of leaflet cross sections have been taken from a set of five date palm tree cultivars (Hewlat al Jouf, Khlas, Nabot Soltan, Shishi, Um Raheem). After features extraction from images, the obtained data have been fed in a multilayer perceptron ANN with backpropagation learning algorithm. CONCLUSIONS: Overall, an accurate result in prediction and differentiation of date palm tree cultivars was achieved with average prediction in tenfold cross-validation is 89.1% and reached 100% in one of the best ANN.