Cargando…
Sparse Representation for Tumor Classification Based on Feature Extraction Using Latent Low-Rank Representation
Accurate tumor classification is crucial to the proper treatment of cancer. To now, sparse representation (SR) has shown its great performance for tumor classification. This paper conceives a new SR-based method for tumor classification by using gene expression data. In the proposed method, we first...
Autores principales: | Gan, Bin, Zheng, Chun-Hou, Zhang, Jun, Wang, Hong-Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942202/ https://www.ncbi.nlm.nih.gov/pubmed/24678505 http://dx.doi.org/10.1155/2014/420856 |
Ejemplares similares
-
Low-Rank and Eigenface Based Sparse Representation for Face Recognition
por: Hou, Yi-Fu, et al.
Publicado: (2014) -
Brain Lesion Segmentation Based on Joint Constraints of Low-Rank Representation and Sparse Representation
por: Ge, Ting, et al.
Publicado: (2019) -
Self-supervised sparse coding scheme for image classification based on low rank representation
por: Li, Ao, et al.
Publicado: (2018) -
Gene Feature Extraction Based on Nonnegative Dual Graph Regularized Latent Low-Rank Representation
por: Yang, Guoliang, et al.
Publicado: (2017) -
Maxdenominator Reweighted Sparse Representation for Tumor Classification
por: Li, Weibiao, et al.
Publicado: (2017)