Cargando…

Transcriptome Sequencing and De Novo Analysis of Youngia japonica Using the Illumina Platform

Youngia japonica, a weed species distributed worldwide, has been widely used in traditional Chinese medicine. It is an ideal plant for studying the evolution of Asteraceae plants because of its short life history and abundant source. However, little is known about its evolution and genetic diversity...

Descripción completa

Detalles Bibliográficos
Autores principales: Peng, Yulan, Gao, Xinfen, Li, Renyuan, Cao, Guoxing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942458/
https://www.ncbi.nlm.nih.gov/pubmed/24595283
http://dx.doi.org/10.1371/journal.pone.0090636
Descripción
Sumario:Youngia japonica, a weed species distributed worldwide, has been widely used in traditional Chinese medicine. It is an ideal plant for studying the evolution of Asteraceae plants because of its short life history and abundant source. However, little is known about its evolution and genetic diversity. In this study, de novo transcriptome sequencing was conducted for the first time for the comprehensive analysis of the genetic diversity of Y. japonica. The Y. japonica transcriptome was sequenced using Illumina paired-end sequencing technology. We produced 21,847,909 high-quality reads for Y. japonica and assembled them into contigs. A total of 51,850 unigenes were identified, among which 46,087 were annotated in the NCBI non-redundant protein database and 41,752 were annotated in the Swiss-Prot database. We mapped 9,125 unigenes onto 163 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database. In addition, 3,648 simple sequence repeats (SSRs) were detected. Our data provide the most comprehensive transcriptome resource currently available for Y. japonica. C(4) photosynthesis unigenes were found in the biological process of Y. japonica. There were 5596 unigenes related to defense response and 1344 ungienes related to signal transduction mechanisms (10.95%). These data provide insights into the genetic diversity of Y. japonica. Numerous SSRs contributed to the development of novel markers. These data may serve as a new valuable resource for genomic studies on Youngia and, more generally, Cichoraceae.