Cargando…
Potential Role of Bacterial Infection in Autoimmune Diseases: A New Aspect of Molecular Mimicry
Molecular mimicry is an attractive mechanism for triggering autoimmunity. In this review, we explore the potential role of evolutionary conserved bacterial proteins in the production of autoantibodies with focus on granulomatosis with polyangiitis (GPA) and rheumatoid arthritis (RA). Seven autoantig...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Association of Immunologists
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942510/ https://www.ncbi.nlm.nih.gov/pubmed/24605075 http://dx.doi.org/10.4110/in.2014.14.1.7 |
_version_ | 1782479084827181056 |
---|---|
author | Alam, Jehan Kim, Yong Chul Choi, Youngnim |
author_facet | Alam, Jehan Kim, Yong Chul Choi, Youngnim |
author_sort | Alam, Jehan |
collection | PubMed |
description | Molecular mimicry is an attractive mechanism for triggering autoimmunity. In this review, we explore the potential role of evolutionary conserved bacterial proteins in the production of autoantibodies with focus on granulomatosis with polyangiitis (GPA) and rheumatoid arthritis (RA). Seven autoantigens characterized in GPA and RA were BLASTed against a bacterial protein database. Of the seven autoantigens, proteinase 3, type II collagen, binding immunoglobulin protein, glucose-6-phosphate isomerase, α-enolase, and heterogeneous nuclear ribonuclear protein have well-conserved bacterial orthologs. Importantly, those bacterial orthologs are also found in human-associated bacteria. The wide distribution of the highly conserved stress proteins or enzymes among the members of the normal flora and common infectious microorganisms raises a new question on how cross-reactive autoantibodies are not produced during the immune response to these bacteria in most healthy people. Understanding the mechanisms that deselect auto-reactive B cell clones during the germinal center reaction to homologous foreign antigens may provide a novel strategy to treat autoimmune diseases. |
format | Online Article Text |
id | pubmed-3942510 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | The Korean Association of Immunologists |
record_format | MEDLINE/PubMed |
spelling | pubmed-39425102014-03-06 Potential Role of Bacterial Infection in Autoimmune Diseases: A New Aspect of Molecular Mimicry Alam, Jehan Kim, Yong Chul Choi, Youngnim Immune Netw Molecular mimicry is an attractive mechanism for triggering autoimmunity. In this review, we explore the potential role of evolutionary conserved bacterial proteins in the production of autoantibodies with focus on granulomatosis with polyangiitis (GPA) and rheumatoid arthritis (RA). Seven autoantigens characterized in GPA and RA were BLASTed against a bacterial protein database. Of the seven autoantigens, proteinase 3, type II collagen, binding immunoglobulin protein, glucose-6-phosphate isomerase, α-enolase, and heterogeneous nuclear ribonuclear protein have well-conserved bacterial orthologs. Importantly, those bacterial orthologs are also found in human-associated bacteria. The wide distribution of the highly conserved stress proteins or enzymes among the members of the normal flora and common infectious microorganisms raises a new question on how cross-reactive autoantibodies are not produced during the immune response to these bacteria in most healthy people. Understanding the mechanisms that deselect auto-reactive B cell clones during the germinal center reaction to homologous foreign antigens may provide a novel strategy to treat autoimmune diseases. The Korean Association of Immunologists 2014-02 2014-02-21 /pmc/articles/PMC3942510/ /pubmed/24605075 http://dx.doi.org/10.4110/in.2014.14.1.7 Text en Copyright © 2014 The Korean Association of Immunologists http://creativecommons.org/licenses/by-nc/3.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Alam, Jehan Kim, Yong Chul Choi, Youngnim Potential Role of Bacterial Infection in Autoimmune Diseases: A New Aspect of Molecular Mimicry |
title | Potential Role of Bacterial Infection in Autoimmune Diseases: A New Aspect of Molecular Mimicry |
title_full | Potential Role of Bacterial Infection in Autoimmune Diseases: A New Aspect of Molecular Mimicry |
title_fullStr | Potential Role of Bacterial Infection in Autoimmune Diseases: A New Aspect of Molecular Mimicry |
title_full_unstemmed | Potential Role of Bacterial Infection in Autoimmune Diseases: A New Aspect of Molecular Mimicry |
title_short | Potential Role of Bacterial Infection in Autoimmune Diseases: A New Aspect of Molecular Mimicry |
title_sort | potential role of bacterial infection in autoimmune diseases: a new aspect of molecular mimicry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942510/ https://www.ncbi.nlm.nih.gov/pubmed/24605075 http://dx.doi.org/10.4110/in.2014.14.1.7 |
work_keys_str_mv | AT alamjehan potentialroleofbacterialinfectioninautoimmunediseasesanewaspectofmolecularmimicry AT kimyongchul potentialroleofbacterialinfectioninautoimmunediseasesanewaspectofmolecularmimicry AT choiyoungnim potentialroleofbacterialinfectioninautoimmunediseasesanewaspectofmolecularmimicry |